

FACULTY OF ENGINEERING AND TECHNOLOGY

B.E. (Four Year) Degree Programme (FULL-TIME)

Choice Based Credit System (CBCS)

REGULATIONS 2021-2022

1. Condition for Admission

Candidates for admission to the first year of the four year B.E. Degree programmes shall be required to have passed the final examination of the plus 2 Higher Secondary Course with Mathematics, Physics and Chemistry as courses of study and candidates who have passed the Higher Secondary Examination through vocational stream under Engineering, conducted by the Board of Secondary Education, Government of Tamil Nadu or an examination of any other authority accepted by the Syndicate of this University as equivalent thereto. They shall satisfy the conditions regarding qualifying marks, age and Human physical fitness as may be prescribed by the Syndicate of the Annamalai University from time to time.

Candidates who have passed the Diploma programme in Engineering of the State Board of Technical Education, Tamil Nadu (listed in Annexure-I) will be eligible for admission to the second year of the four year degree programme in B.E. under the lateral entry scheme provided they satisfy other conditions.

2. Branches of Study in B.E.

BRANCH I - Chemical Engineering

BRANCH II - Civil Engineering

BRANCH III - Civil and Structural Engineering
BRANCH IV - Computer Science and Engineering
BRANCH V - Electrical and Electronics Engineering

BRANCH VI - Electronics and Communication Engineering
BRANCH VII - Electronics and Instrumentation Engineering

BRANCH VIII - Information Technology
BRANCH IX - Mechanical Engineering

BRANCH X - Mechanical Engineering (Manufacturing)

BRANCH XI - Computer Science and Engineering (Artificial Intelligence and

Machine Learning)

BRANCH XII - Computer Science and Engineering (Data Science)

3. Courses of Study and Scheme of Examinations

The courses of study with respective syllabi and the scheme of Examinations are given separately.

4. Choice Based Credit System (CBCS)

The curriculum includes six components namely Humanities / Social Sciences / Management, Basic Sciences, Engineering Sciences, Professional Core, Professional Electives and Open Electives in addition to Seminar & Industrial Training and Project. Each semester curriculum shall normally have a blend of theory and practical courses. The total credits for the entire degree Programme is **166** (**127** for lateral entry students).

5. Eligibility for the Degree

A candidate shall be eligible for the degree of Bachelor of Engineering if the candidate has satisfactorily undergone the prescribed courses of study for a period of four academic years and has passed the prescribed examinations in all the four academic years. For the award of the degree, a student has to

5.1Earn a minimum of 166 credits (127 for lateral entry students).

5.2 Serve in any one of the Co-curricular activities such as

- National Cadet Corps (NCC)
- National Service Scheme (NSS)
- National Sports Organization (NSO) and
- Youth Red Cross (YRC)

for at least one year. The students enrolled in any one of the co-curricular activities (NCC / NSS / NSO / YRC) will undergo training for about 80 hours and attend a camp of about seven days. The training shall include classes on hygiene and health awareness and also training in first-aid. While the training activities will normally be during weekends, the camp will normally be during vacation period.

(or)

Enrol as a student member of a recognized professional society such as

- Student Chapters of Institution of Engineers (India)
- Student Chapters of other Professional bodies like ICI, ISA, IIChE, IEEE, SAE, ASHRAE, CSI and IWS

5.3 B.E (Honours) Degree

A student shall be eligible to get Under Graduate degree with Honors, if he/she completes an additional 20 credits. Thus the total credits are 186. Out of 186 credits(147credits for lateral entry students), 20 credits must be earned by studying additional course offered by the same or allied Departments (listed in Annexure-II) in sixth, seventh and eighth semesters. These additional 20 credits could be acquired through the MOOC courses of SWAYAM portal also.

5.4 B.E Degree with Minor Engineering

A student shall be eligible to get Under Graduate degree with additional Minor Engineering, if he/she completes an additional 20 credits. Out of the 186 credits, 20 credits must be earned from the courses offered by any one of the Departments (listed in Annexure-II) in the Faculty of Engineering and Technology in sixth, seventh and eighth semesters. These additional 20 credits could be acquired through the MOOC courses offered in SWAYAM portal also.

6. Assignment of Credits for Courses

Each course is normally assigned one credit per hour of lecture/tutorial per week and half credit for one hour for laboratory or practical or drawing course per week.

7. Duration of the Programme

A student is normally expected to complete the B.E. programme in four years but in any case not more than seven years from the time of admission.

8. Registration for Courses

A newly admitted student will automatically be registered for all the courses prescribed for the first, second and third semesters without any option.

Every other student shall enrol for the courses intended to be credited in the succeeding semester in the current semester itself by completing the registration form indicating the list of courses. This registration will be done a week before the last working day of the current semester.

A student is required to earn 166 (127 for lateral entry students) credits in order to be eligible for obtaining the degree. However the student is entitled to enjoy an option to earn either more or less

than the total number of credits prescribed in the curriculum of a particular semester on the following guidelines:

8.1Slow Learners

The **slow learners** may be allowed to withdraw certain courses with the approval by the Head of the Department and those courses may be completed by them in the fifth year of study and still they are eligible to be awarded with I Class. A student can withdraw a maximum of 2 courses per semester from IV semester to VII semester and take up those courses in the fifth year of study. However, courses withdrawn during odd semesters (V and VII) must be registered in the odd semester of fifth year and courses withdrawn during even semesters (IV and VI) must be registered in the even semester of fifth year.

8.2 Advance Learners

The **advance learners** may be allowed to take up the open elective courses of eighth semester in sixth and seventh semesters one in each to enable them to pursue industrial training/project work in the entire eighth semester period provided they should register those courses in the fifth semester itself. Such students should meet the teachers offering those elective courses themselves for clarifications. No specific slots will be allotted in the time table for such courses.

9. Mandatory Internship (Industrial Training)

To promote industrial internship at the graduate level in technical institutes and also to enhance the employability skills of the students passing out from Technical Institutions, the internship for the students at different stages of the programme is included in the curriculum. The student has to undergo the internship during the semester vacation in the II year and III year of the programme in accordance with the details outlined below. Further the student has to submit a report on completion of the internship during the subsequent Odd semester that is in the V and VII semesters respectively.

During the vacation in the II and III year of the programme,

The student may choose any of the following **Internship / Innovation /** related activities for a total of **4 weeks** duration in each year

- (i) Work on innovation or entrepreneurial activities resulting in start-up.
- (ii) Undergo internship with industry/ NGO's/ Government organizations/ Micro/ Small/Medium enterprises.
- (iii) Undergo internship with National Employment Enhancement Mission (NEEM) Facilitator.

10. Project Work

The student typically registers for project at the end of seventh semester and completes it at the end of the eighth semester along with the courses prescribed for study in the eighth semester. However a student who has registered and successfully completed the courses of eighth semester by acquiring additional credits in the earlier semesters can attempt to spend his/her period of study in an industry and complete his/her project work, submit the project report and appear for viva-voce examination at the end of eighth semester.

11. Mandatory Induction program

A 3-week long induction program for the UG students entering the institution, right at the start is proposed. Normal classes start only after the induction program is over. The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

- Physical Activity
- Creative Arts
- Imparting Universal Human Values
- Literary Activities
- Conduct of crash courses on soft skills
- Lectures by Eminent People
- Visits to Local Area
- Familiarization to Dept./Branch & Innovative practices

12. Electives

The elective courses fall under two basic categories: Professional Electives and Open Electives.

12.1Professional Elective courses

The Professional Elective courses are offered in the concerned branch of specialization and a student can choose the Professional Elective courses with the approval of the Head of the Department concerned.

12.20pen Elective courses

Apart from the various Professional elective courses, a student must study **four** open elective courses **three/two** of which offered by the Department concerned and **one/two** open elective course offered by any other Department in the Faculty of Engineering & Technology during either sixth or seventh or eighth semester of study, with the approval of the Head of the Department and the Head of the Department offering the course.

12.3MOOC (SWAYAM) Courses

Further, the student can be permitted to earn not more than 20 % of his total credits (that is 32 credits) by studying the Massive Open Online Courses offered through the SWAYAM Portal of UGC with the approval of the Head of the Department concerned. These courses will be considered as equivalent to the professional elective and/or open elective courses. Thus the credit earned through MOOC courses can be transferred and considered for awarding Degree to the student concerned.

12.4 Value added courses

A student can study one or more value added courses being offered by the Departments of Study in other Faculties of our University preferably in the sixth or seventh semester of the B.E degree programme.

12.5 One Credit Courses

One credit courses shall be offered by a Department with the prior approval from the Dean, Faculty of Engineering and Technology.

12.5.1 Industry Expert

For one credit courses, a relevant potential topic may be selected by a committee consisting of the Head of the Department concerned and the Board of Studies member from the Department and a senior faculty member from the Department concerned. An expert from industry familiar with the topic chosen may be accordingly invited to handle classes for the students. The details of the syllabus, time table and the name of the industrial expert may be sent by the above committee to the Dean for approval. The credits earned through the one credit courses shall be over and above the total credit requirement prescribed in the curriculum for the award of the degree. Students can take a maximum of two one credit courses (one each in VI and VII semesters). They shall be allowed to take one credit courses offered in other Departments with the permission of Head of the Department offering the courses. A separate mark sheet shall be issued for one credit courses.

12.5.2 NSQF Courses

A student can be permitted to acquire additional credits not more than two by undergoing any two of the one credit courses conducted under the auspices of National Skills Qualification Framework (NSQF). NSQF is a nationally integrated education and competency based skill and quality assurance framework that will provide for multiple pathways, horizontal as well as vertical, including vocational education, vocational training, general education and technical education, thus linking one level of learning to another higher level. This will enable a student to acquire desired competency levels, transit to the job market and at an opportune time, return for acquiring additional skills to further upgrade their competencies.

13. Assessment

13.1Theory Courses

The break-up of continuous assessment and examination marks for theory courses is as follows:

First assessment (Mid-Semester Test-I) : 10 marks Second assessment (Mid-Semester Test-II) : 10 marks Third Assessment : 5 marks End Semester Examination : 75 marks

13.2 Practical Courses

The break-up of continuous assessment and examination marks for Practical courses is as follows:

First assessment (Test-I) : 15 marks
Second assessment (Test-II) : 15 marks
Maintenance of record book : 10 marks
End Semester Examination : 60 marks

13.3 Project Work

The continuous assessment marks for the project work will be 40 and to be assessed by a review committee consisting of the project guide and a minimum of two members nominated by the Head of the Department. One of the committee members will be nominated as the Chairman by the Head of the Department. The Head of the Department may be a member or the Chairman. At least two reviews should be conducted during the semester by the review committee. The student shall make presentation on the progress made before the committee. 60 marks are allotted for the project work and viva voce examination at the end of the semester.

13.4 Industrial Internship

After attending the internship during the semester vacation of III / IV year, the student has to present a report at the start of the subsequent odd semester (V / VII semester) to the committee which will assess and award marks out of 100. The committee is constituted with an Internship Coordinator and a minimum of two members nominated by the Head of the Department for each class.

14. Substitute Assessment

A student, who has missed, for genuine reasons accepted by the Head of the Department, one or more of the assessments of a course other than the final examination, may take a substitute assessment for any one of the missed assessments. The substitute assessment must be completed before the date of the third meeting of the respective class committees.

A student who wishes to have a substitute assessment for a missed assessment must apply to the Dean / Head of the Department within a week from the date of the missed assessment.

15. Student Counsellors (Mentors)

To help the students in planning their course of study and for general advice on the academic programme, the Dean / Head of the Department will attach a certain number of students to a member of the faculty who shall function as student counsellor for those students throughout their period of study. Such student counsellors shall advise the students, give preliminary approval for the courses to be taken by the students during each semester and obtain the final approval of the Dean / Head of the Department.

16. Class Committee

For all the branches of study during the first two semesters, a common class committee will be constituted by the Dean of the faculty. From among the various teachers teaching the same common course to different classes during each semester of the first year, the Dean shall appoint one of them as course coordinator. The composition of the class committee during first and second semesters will be as follows:

- Course coordinators of all courses.
- All the Heads of the Sections, among whom one may be nominated as Chairman by the Dean.
- The Dean may opt to be a member or the Chairman.

For each of the higher semesters, separate class committees will be constituted by the respective Head of the Departments. The composition of the class committees from third to eighth semester will be as follows:

- Teachers of the individual courses.
- A seminar coordinator (for seventh semester only) shall be appointed by the Head of the Department
- A project coordinator (for eighth semester only) shall be appointed by the Head of the Department from among the project supervisors.
- One Professor or Associate Professor, preferably not teaching the concerned class, appointed as Chairman by the Head of the Department.
- The Head of the Department may opt to be a member or the Chairman.

The class committee shall meet three times during the semester. The first meeting will be held within two weeks from the date of class commencement in which the type of assessment like test, assignment etc. for the third assessment and the dates of completion of the assessments will be decided.

The second meeting will be held within a week after the completion of the first assessment to review the performance and for follow-up action.

The third meeting will be held after all the assessments but before the University semester examinations are completed for all the courses, and at least one week before the commencement of the examinations. During this meeting the assessment on a maximum of 25 marks for theory/40 marks for seminar/ industrial training, practical and project work will be finalized for every student and tabulated and submitted to the Head of the Department (to the Dean in the case of & II Semester) for approval and transmission to the Controller of Examinations.

17. Attendance requirements

The students with 75% attendance and above are permitted to appear for the University examinations. However, the Vice Chancellor may give a rebate / concession not exceeding 10% in attendance for exceptional cases only on Medical Grounds.

18. Temporary break of study

A student is permitted to go on break of study for a maximum period of one year either as two breaks of one semester each or a single break of one year.

If a student wishes to apply for break of study, the student shall apply to the Dean in advance, in any case, not later than the last date of the first assessment period. The application duly filled by the student shall be submitted through the Head of the Department. In the case of short term employment/ training/ internship, the application for break of study shall be approved and forwarded by the Head of the Department concerned to the Dean.

However, the student must complete the entire programme within the maximum period of seven years.

19. Procedure for withdrawing from the Examinations

A student can withdraw from all the examinations of the semester only once during the entire programme on valid grounds accepted by the University. Such withdrawal from the examinations of a semester will be permitted only if the candidate applies for withdrawal at least 24 hours before the commencement of the last examination. The letter grade 'W' will appear in the mark sheet for such candidates.

20. Passing and declaration of examination results

All assessments of all the courses on an absolute marks basis will be considered and passed by the respective results passing boards in accordance with the rules of the University. Thereafter, the Controller of Examinations shall convert the marks for each course to the corresponding letter grade as follows, compute the Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA), and prepare the mark sheets.

90 to 100 marks Grade 'S' : 80 to 89 marks Grade 'A' 70 to 79 marks Grade 'B' 60 to 69 marks Grade 'C' 55 to 59 marks Grade 'D' 50 to 54 marks Grade 'E' Less than 50 marks Grade 'RA' Grade 'W' Withdrawn from the examination:

A student who obtains less than 30 / 24 marks out of 75 / 60 in the theory / practical examinations respectively or is absent for the examination will be awarded grade RA.

A student who earns a grade of S, A, B, C, D or E for a course, is declared to have successfully completed that course. Such a course cannot be repeated by the student.

A student who is detained for lack of attendance must re-register for and repeat the courses in the respective semester.

A student who obtains letter grade RA in the mark sheet must reappear for the examination of the courses except for Honours courses.

A student who obtains letter grade W in the mark sheet must reappear for the examination of the courses.

The following grade points are associated with each letter grade for calculating the grade point average and cumulative grade point average.

Courses with grade RA / W are not considered for calculation of grade point average or cumulative grade point average.

A student can apply for re-valuation of one or more of his examination answer papers within a week from the date of issue of mark sheet to the student on payment of the prescribed fee per paper. The application must be made to the Controller of Examinations with the recommendation of the Head of the Department.

After the results are declared, mark sheets will be issued to the students. The mark sheet will contain the list of courses registered during the semester, the grades scored and the grade point average for the semester.

GPA is the sum of the products of the number of credits of a course with the grade point scored in that course, taken over all the courses for the semester, divided by the sum of the number of credits for all courses taken in that semester.

CGPA is similarly calculated considering all the courses taken from the time of admission.

21. Awarding Degree

After successful completion of the programme, the degree will be awarded with the following classification based on CGPA.

21.1 Honours Degree

To obtain **Honours Degree** a student must earn a minimum of **186 credits** within four years (147credits within three years for lateral entry students) from the time of admission, pass all the courses in the first attempt from I Semester to VIII Semester (III Semester to VIII Semester for lateral entry students) and obtain a CGPA of 8.25 or above.

21.2First Class with Distinction

To obtain B.E Degree First Class with Distinction, a student must earn a minimum of 166 Credits within four years (127 credits within three years for lateral entry students) from the time of admission, by passing all the courses in the first attempt from I Semester to VIII Semester (III Semester to VIII Semester for lateral entry students) and obtain a CGPA of 8.25 or above.

21.3First Class

To obtain B.E Degree First Class, a student must earn a minimum of 166 credits within *five* years (127 credits within *four* years for lateral entry students) from the time of admission and obtain a CGPA of 6.75 or above for all the courses from I Semester to VIII Semester (III Semester to VIII Semester for lateral entry students).

21.4Second Class

For Second Class, the student must earn a minimum of 166 credits within **seven** years (127 credits within **six** years for lateral entry students) from the time of admission.

21.5B.E Degree with Minor Engineering

For Minor Engineering, the student must earn a minimum of 186 credits within four years (147 credits within three years for lateral entry students) from the time of admission, pass all the courses. The rules for awarding the B.E degree in First Class with Distinction or in First Class or in Second Class will be applicable for this also.

22. Ranking of Candidates

The candidates who are eligible to get the B.E. degree with Honours will be ranked together on the basis of CGPA for all the courses of study from I Semester to VIII Semester (III Semester to VIII Semester for lateral entry students).

The candidates who are eligible to get the B.E. degree in First Class with Distinction will be ranked next after those with Honours on the basis of CGPA for all the courses of study from I Semester to VIII Semester (III Semester to VIII Semester for lateral entry students).

The Candidates passing with First Class will be ranked next after those with distinction on the basis of CGPA for all the courses of study from I Semester to VIII Semester (III Semester to VIII Semester for lateral entry students).

The ranking of candidates will be done separately for each branch of study.

23. Transitory Regulations

The University shall have powers to revise or change or amend the regulations, the scheme of examinations, the courses of study and the syllabi from time to time.

Wherever there had been change of syllabi, examinations based on the existing syllabi will be conducted for three consecutive times after implementation of the new syllabi in order to enable the students to clear the arrears. Beyond that the students will have to take up their examinations in equivalent courses, as per the new syllabi, on the recommendations of the Head of the Department concerned.

Diploma Programmes Eligible for the B.E (Lateral Entry) Programmes offered in FEAT (from 2021-2022)

Sl. No.	·	Eligit	ole Diploma Programme (FT / PT / SW)
1.	Chemical Engineering	i.	Petrochemical Engineering
		ii.	Chemical Engineering
		iii.	Environmental Engineering and Pollution
			Control
		iv.	Leather Technology (Footwear)
		v.	Leather Technology
		vi.	Plastic Technology
		vii.	Polymer Technology
		viii.	Sugar Technology
		ix.	Textile Technology
		x.	Chemical Technology
		xi.	Ceramic Technology
		xii.	Petro Chemical Technology
		xiii.	Pulp & Paper Technology
		xiv.	Petroleum Engineering
2.	Civil Engineering	i.	Civil Engineering
		ii.	Civil Engineering (Architecture)
		iii.	Environmental Engineering and Pollution
			Control (Full Time)
3.	Civil and Structural Engineering.	iv.	Architectural Assistantship
		v.	Civil Engineering (Rural Tech.)
		vi.	Civil and Rural Engineering
		vii.	Agricultural Engineering
4.	Computer Science and Engineering	i.	Electronics and Communication Engineering
		ii.	Computer Technology
		iii.	Computer Science and Engineering
		iv.	Information Technology
		v.	Computer Engineering
		vi.	Computer Networking
		vii.	Electronics(Robotics)
		viii.	Mechatronics Engineering
5.	Electrical and Electronics	i.	Electrical and Electronics Engineering
	Engineering	ii.	Electronics and Communication Engg.
		iii.	Electronics and Instrumentation Engg.
		iv.	Electronics Engineering(Instrumentation)
		v.	Instrument Technology
		vi.	Instrumentation and Control Engineering
		vii.	Electrical Engineering
		::	(Instruments and Control)
		viii.	Electrical Engineering
		ix.	Instrumentation Technology
		X.	Electronics (Robotics)
		xi.	Mechatronics Engineering

Sl. No.	Branches of Study	Eligible Diploma Programme (FT / PT / SW)						
6.	Electronics and Communication	i. Electronics and Communication Engineering						
	Engineering	ii. Computer Technology						
		iii. Computer Science and Engineering						

		iv. Information Technology
		v. Computer Engineering
		vi. Computer Networking
		vii. Electronics(Robotics)
		viii. Mechatronics Engineering
		ix. Electrical and Electronics Engineering
		x. Electronics and Instrumentation Engg.
7.	Electronics and Instrumentation	i. Electrical and Electronics Engineering
	Engineering	ii. Electronics and Communication Engg.
		iii. Electronics and Instrumentation Engg.
		iv. Electronics Engineering(Instrumentation)
		v. Instrument Technology
		vi. Instrumentation and Control Engineering
		vii. Electrical Engineering
		(Instruments and Control)
		viii. Electrical Engineering
		ix. Instrumentation Technology
		x. Electronics (Robotics)
		xi. Mechatronics Engineering
8.	Information Technology	
0.	information rechnology	
		iii. Computer Science and Engineering
		iv. Information Technology
		v. Computer Engineering
		vi. Computer Networking
		vii. Electronics(Robotics)
		viii. Mechatronics Engineering
9.	Mechanical Engineering	i. Mechanical Engineering
		ii. Mechanical and Rural Engineering
		iii. Mechanical Design and Drafting
		iv. Production Engineering
		v. Production Technology
		vi. Automobile Engineering
		vii. Automobile Technology
		viii. Metallurgy
10.	Mechanical Engineering	i. Mechatronics Engineering
	(Manufacturing Engineering)	ii. Machine Tool Maintenance and Repairs
		iii. Tool and Die making
		iv. Tool Engineering
		v. Tool Design
		vi. Foundry Technology
		vii. Refrigeration and Air Conditioning
		viii. Agricultural Engineering
		ix. Agricultural Technology
		x. Marine Engineering
		xi. Mechanical Engineering(Production)
		xii. Mechanical Engineering(Tool &Die)
		xiii. Mechanical Engineering (Foundry)
		xiv. Mechanical Engineering (Foundry)
		, ,
		xvi. Mining Engineering
		xvii. Agricultural Engineering and Farm Machinery Equipment Technology

11	Computer Science and Engineering	i.	Electronics and Communication Engineering				
	(Artificial Intelligence and Machine	ii.	Computer Technology				
	Learning)	iii.	Computer Science and Engineering				
		iv.	Information Technology				
		v. Computer Engineering					
		vi. Computer Networking					
		vii.	Electronics(Robotics)				
		viii.	Mechatronics Engineering				
12	Computer Science and Engineering	i.	Electronics and Communication Engineering				
	(Data Science)	ii.	Computer Technology				
		iii.	Computer Science and Engineering				
		iv.	Information Technology				
		v.	Computer Engineering				
		vi.	Computer Networking				
		vii.	Electronics(Robotics)				
		viii.	Mechatronics Engineering				

Annexure-II

S.	Branch of Study in	Honours Elective Courses from	Minor Engineering Courses
No.	B.E	Same and Allied Departments	from Other Departments of
		of	
1.	Chemical Engineering	 Chemical Engineering Pharmacy Electronics and Instrumentation Engineering 	 Civil Engineering Mechanical Engineering Electronics and Instrumentation Engg. Information Technology Civil and Structural Engg. Electrical Engineering Electronics and Communication Engg. Mechanical (Manufacturing) Engg. Computer Science and Engineering Computer Science and Engineering. Computer Science and Engineering. Computer Science and Machine Learning) Computer Science and Engineering (Data Science)
2.	Civil Engineering		 Mechanical Engineering Electrical Engineering Chemical Engineering Computer Science and
3.	Civil and Structural Engineering	Civil Engineering Civil and Structural Engg.	Engineering 5. Computer Science and Engineering (Artificial Intelligence and Machine Learning)

	,		
			6. Computer Science and
			Engineering
			(Data Science)
			7. Mechanical (Manufacturing)
			Engg
			8. Electronics and
			Instrumentation Engg
			9. Information Technology
			10. Electronics and
			Communication Engg.
4.	Computer Science	Computer Science and	1. Civil Engineering
T.	and Engineering	Engg.	2. Electronics and
	Computer Science	2. Information Technology	Instrumentation Engg.
	and Engineering	3. Electronics and	3. Electronics and
5.	(Artificial Intelligence	Communication	Communication Engg.
	and Machine	Engineering	4. Mechanical Engineering
	Learning)	4. Computer Science and	5. Mechanical (Manufacturing)
		Engineering(Artificial	Engg.
	Computer Science	Intelligence and Machine	6. Civil and Structural Engg.
6.	and Engineering	Learning)	7. Electrical Engineering
	(Data Science)	5. Computer Science and Engineering(Data Science)	8. Chemical Engineering
		Engineering(Data Science)	
	Electrical and		1. Civil Engineering
7.	Electronics		2. Civil and Structural Engg.
	Engineering		3. Mechanical Engineering
	Electronics and		4. Chemical Engineering
8.	Communication		5. Mechanical (Manufacturing)
	Engg.	1. Electrical Engineering	Engg.
		2. Electronics and	6. Computer Science and
		Instrumentation	Engineering
		Engineering	7. Computer Science and
		3. Electronics and	Engineering
	Electronics and	Communication	(Artificial Intelligence and
9.	Instrumentation	Engineering	Machine Learning)
	Engg.		8. Computer Science and
			Engineering
			(Data Science)
			O Information Total 1
		1 Computer Calaria	9. Information Technology
		Computer Science and Engg.	 Civil Engineering Electronics and
		2. Information Technology	Instrumentation Engg.
		3. Electronics and	3. Electronics and
		Communication	Communication Engg.
	Information	Engineering	4. Mechanical Engineering
10.	Technology	4. Computer Science and	5. Mechanical (Manufacturing)
	- W	Engineering.(Artificial	Engg.
		Intelligence and Machine	6. Civil and Structural Engg.
		Learning)	7. Electrical Engineering
		5. Computer Science and	6. Chemical Engineering
		Engineering(Data Science)	J J
L	i	/	

	1		4 01 11 7 1
			1. Civil Engineering
			2. Civil and Structural Engg.
			3. Electrical Engineering
	Mechanical		4. Chemical Engineering
11.	11. Engineering		5. Computer Science and
			Engineering
			6. Computer Science and
			Engineering
		1. Mechanical Engineering	(Artificial Intelligence andMachine
		2. Mechanical	T
		(Manufacturing) Engg.	Learning)
		(Mariaractaring) Engs.	7. Computer Science and
	Mechanical		Engineering
12.	(Manufacturing)		(Data Science)
12.	Engg.	macturing	, , ,
	Eligg.		8. Electronics and
			Instrumentation Engg.
			9. Information Technology
			10. Electronics and
			Communication Engg.

FACULTY OF ENGINEERING AND TECHNOLOGY

B.E. (Four Year) Degree Programme (FULL-TIME)

Choice Based Credit System (CBCS)

Curriculum for First Year B.E (2022-23 onwards)

COURSES OF STUDY AND SCHEME OF EXAMINATIONS (REGULATION 2022-23)

	SEMESTER I								
Course Code	Category	Course	L	Т	P/D	CA	FE	Total	Credits
ETBS101	BS-I	Mathematics-I	3	1	-	25	75	100	4
ETBS102	BS-II	Physics	3	1	-	25	75	100	4
ETBS103	BS-III	Chemistry	3	1	-	25	75	100	4
ETES104	ES-I	Programming for Problem Solving	2	1	-	25	75	100	3
ETSP105	ESP-I	Computer Programming Laboratory	-	ı	4	40	60	100	2
ETSP106	ESP-I	Engineering Workshop/Manufacturing Practices	1	-	3	40	60	100	2.5
ETSP107	ESP-II	Electrical Wiring and Earthing Practice Laboratory	-	-	2	40	60	10	1
						Tota	al Cre	edits	20.5

	SEMESTER II								
Course Code	Category	Course	L	т	P/D	CA	FE	Total	Credits
ETHS201	HS-I	English	3	1	-	25	75	100	4
ETBS202	BS-IV	Mathematics-II	3	1	-	25	75	100	4
ETES203	ES-II	Basic Electrical and Electronics Engineering	3	-	-	25	75	100	3
ЕТНР204	HSP-I	Communication Skills and Language Laboratory	-	ı	2	40	60	100	1
ETBP205	BSP-I	Physics Laboratory	-	-	3	40	60	100	1.5
ETBP206	BSP-II	Chemistry Laboratory	-	-	3	40	60	100	1.5
ETSP207	ESP-IV	Engineering Graphics	2	=	3	40	60	100	3.5
						Tota	al Cre	edits	18.5

HS	Humanities and Social Sciences including Management
115	courses
BS	BasicScience courses
ES	Engineering Science Courses
CA	Continuous Assessment Marks
FE	Final Exam Marks

		THIRD SEMESTE	ΣR						
Course Code	Category	Course	L	т	P	CA	FE	Total	Credits
21ETBS301	BS-V	Mathematics-III	3	1	-	25	75	100	4
21ETES302	ES-III	Environmental Studies	3	-	-	25	75	100	3
21ETES303	ES-IV	Engineering Mechanics	3	-	-	25	75	100	3
21CEES304	ES-V	Construction Engineering	2	-	-	25	75	100	2
21CEPC305	PC-I	Introduction to Fluids Mechanics	3	1	-	25	75	100	4
21CZPC306	PC-II	Concrete Technology	3	-	-	25	75	100	3
21CESP307	ESP-V	Computer Practical- Building Drawings	-	-	3	40	60	100	1.5
21CECP308	PCP-I	Fluid Mechanics Laboratory	-	-	3	40	60	100	1.5
21CZCP309	PCP-II	Construction Materials Laboratory	-	-	3	40	60	100	1.5
				1	l'ota	l Cred	lits		23.5

		FOURTH SEMES	TER						_
Course Code	Category	Course	L	Т	P	CA	FE	Total	Credits
21CEBS401	BS-VI	Probability & Statistics for Civil Engineering	3	-	-	25	75	100	3
21CZES402	ES-VI	Introduction to Solid Mechanics	2	-	-	25	75	100	2
21CEPC403	PC-III	Surveying	3	-	-	25	75	100	3
21CEPC404	PC-IV	Applied Hydraulic Engineering	3	-	-	25	75	100	3
21CEPC405	PC-V	Geotechnical & Foundation Engineering	3	-	-	25	75	100	3
21CEPC406	PC-VI	Strength of Materials	3	-	-	25	75	100	3
21ETHS407	HS-II	Universal Human Values	3	-	-	25	75	100	3
21CECP408	PCP-III	Surveying Laboratory-I	-	-	3	40	60	100	1.5
21CECP409	PCP-IV	Hydraulic Engineering Laboratory	-	-	3	40	60	100	1.5
21CECP410	PCP-V	Strength of Materials Laboratory	-	-	3	40	60	100	1.5
					Т	otal (Credi	its	24.5

Students must undergo Internship for a total of 4 weeks during vacation which will be assessed in the forthcoming V Semester.

		FIFTH SEM	EST	ER						
Course Code	Category	Category	Course	L	Т	P	CA	FE	Total	Credits
21CEPC501	PC-VII	Water & Wastewater Engineering	3	-	-	25	75	100	3	
21CEPC502	PC-VIII	Advanced Surveying	3	-	-	25	75	100	3	
21CEPC503	PC-IX	Structural Analysis	3	-	_	25	75	100	3	
21CEPC504	PC-X	Structural Concrete Design	3	-	-	25	75	100	3	
21CEPE505	· PE-I	Professional Elective – I	3	÷	-	25	75	100	3	
21CEPE506	PE-II	Professional Elective – II	3	-	-	25	75	100	3	
21CECP507	PCP-VI	Environmental Engineering Laboratory	_	-	3	40	60	100	1.5	
21CECP508	PCP-VII	Surveying Laboratory-II	-	-	3	40	60	100	1.5	
21CECP509	PCP-VIII	Structural Design & Detailing Laboratory-I	-	_	3	40	60	100	1.5	
		Industrial Training / Rural Internship/Innovation / Entrepreneurship	va	the s catio	sum: on a	t the e	Ü	100	4.0	
			of I	V Se	me	ster Tota	1 Cre	100	4.0 26.5	

	SIXTH SEMESTER									
Course Code	Category	Course		Т	P	CA	FE	Total	Credits	
21CEPC601	PC-XI	Highway Engineering	3	-	-	25	75	100	3	
21CEPC602	PC-XII	Structural Steel Design	3	-	-	25	75	100	3	
21CEPE603	PE-III	Professional Elective – III	3	-	-	25	75	100	3	
21CEPE604	PE-IV	Professional Elective – IV	3	-	-	25	75	100	3	
21CEPE605	PE-V	Professional Elective – V	3	-	-	25	75	100	3	
21YYOE606#	OE-I	Open Elective – I	3	-	-	25	75	100	3	
21CECP607	PCP-IX	Highway Engineering Laboratory	-	-	3	40	60	100	1.5	
Structural Design 8 21CECP608 PCP-X Laboratory-II		Structural Design & Detailing Laboratory-II	=	-	3	40	60	100	1.5	
				•	Tot	al C	redit	ts	21	

Students must undergo Internship for a total of 4 weeks during vacation which will be assessed in the forthcoming VII Semester.

[#] YY - Branch Code of the branch which offers the Open Elective Course

	SEVENTH SEMESTER									
Course Code	Category	Course	L	Т	P	CA	FE	Total	Credits	
21ETHS701	HS-II	Professional Practices, Law & Ethics		-	-	25	75	100	2	
21CEPC702	PC-XIII	Planning & Cost Evaluation		-	-	25	75	100	3	
21CEPE703	PE-VI	Professional Elective – VI	3	-	-	25	75	100	3	
CEPE704	PE-VII	Professional Elective – VII		-	3	40	60	100	3	
#21YYOE705	OE-II	Open Elective – II	3						3	
21CECP706	PCP-XI	Planning & Cost Evaluation Laboratory	-						1.5	
21ETIT707	IT-III	Industrial Training / Rural Internship / Innovation / Entrepreneurship	Four weeks during the summer vacation at the end of VI Semester		the r n at ! of	100	100	4		
Total Cr						Credi	ts	19.5		

YY - Branch Code of the branch which offers the Open Elective Course

	SEMESTER VIII								
Course Code	Category Course L T P CA FE Total								Credits
21CEOE801	OE-III	Open Elective-III (from the department)	3	ı	-	25	75	100	3
21CEOE802	OE-IV	Open Elective-IV (from the department)	3	-	-	25	75	100	3
21CEPV803	PV-I	Project Work and Viva Voce		PR	S	40	60	100	6
				10	2	40	60	100	6
			Total Credits					12	

L	L No. of Lecture Hours		No. of Hours for Discussion on
T	T No. of Tutorial Hours		No. of Seminar Hours on
			Industrial Training / Project
P	P No. of Practical Hours		No. of Hours for Discussion on
			Project work
CA	Continuous Assessment Marks	FE	Final Examination Marks
Credits Credit points allotted to that		Total	Total Marks
	course		

Sl. No	Course Code	Title of Subject	Credits
1	CEPESCN	PESCN Integrated Water Resources Management	
2	CEPESCN	Irrigation Engineering	3
3	CEPESCN	Pre Fabricated Structures	3
4	CEPESCN	Traffic Engineering & Management	3
5	CEPESCN	Advanced Construction Techniques	3
6	CEPESCN	Membrane Technology	3
7	CEPESCN	Construction Planning & Management	
8	CEPESCN	Industrial Wastewater Engineering	3
9	CEPESCN	Remote Sensing & GIS	3
10	CEPESCN	Transportation Engineering	3
11	CEPESCN	Architecture	3
12	CEPESCN	Railways, Airports and Harbour Engineering	3
13	CEPESCN	Urban Planning & Development	3
14	CEPESCN	Climate Change Adaptation & Mitigation	3
15	CEPESCN	Surface & Groundwater Hydrology	3

OPEN ELECTIVES

S1. No	Course Code	Title of Subject	Credits
1	CEOE SCN	Air Pollution Monitoring & Control	3
2	CEOE SCN	Municipal SolidWaste Management	3
3	CEOE SCN	Economics & Finance for Civil Engineering	3
4	CEOE SCN	Environmental Impact Assessment	3
5	CEOE SCN	Coastal Engineering	3
6	CEOE SCN	Total Quality Management	3
7	CEOE SCN	Computer Aided Design of Structures	3
8	CEOE SCN	Online MOOC course or other courses	3

HONOUR ELECTIVES

S1. No	Course Code	Title of Subject	Credits
1	CEHE SCN	Special Concrete Structures	4
2	CEHE SCN	Earth Quake Engineering	3
3	CEHE SCN	Advanced water Treatment	4
4	CEHE SCN	WaterShed Management	3
5	CEHE SCN	Geo Environmental Engineering	3
6	CEHE SCN	Intellectual Property Rights	3
7	CEHE SCN	Sustainable Engineering and Technology	3

MINOR ENGINEERING ELECTIVES

S1. No	Course Code	Title of Subject	Credits	
--------	-------------	------------------	---------	--

1	CEME SCN	Advanced Water Treatment	3
2	CEME SCN	ME SCN Climate Change Adaptation & Mitigation	
3	CEME SCN	Environmental Impact Assessment	3
4	CEME SCN	Total Quality Management	3
5	CEME SCN	Urban Planning & Development	3
6	CEME SCN	Special Concrete Structures	3

VISION

To become

School of Excellence in Civil Engineering

With **Conformity, Quality and Standards** in **teaching, research, training** and **consultancy** towards producing globally competent Civil Engineers.

MISSION

M1: To Promote quality in education, research and professional training for satisfying the needs of industry and society.

M2: To provide state-of-the-art facilities and resources that contributes to a congenial learning environment.

M3: To establish Centers of Excellence in emerging areas of Civil Engineering for the students to acquire domain specific expertise and also facilitate Industry- Institution interaction.

M4: To inspire the students to pursue higher education and take competitive examinations and various career enhancing programs.

M5: To instill the professional ethics and their role for sustainable development and corruption-free country.

PROGRAM EDUCATIONAL OBJECTIVES

PEO 1	To impart knowledge in the fundamentals of Civil Engineering such as Surveying, Planning, Structural Analysis, Design, Costing and Construction.				
PEO 2	To develop soft skill and value addition through software platforms such as SURFER, 3D Home Architect, ARCHICAD, STAAD Pro, ArcGIS, QGIS, ANSYS, ERDAS, etc.				
PEO 3	To ensure necessary aptitude and ethics through class room teaching, laboratory practice and field demonstration towards pursuing a quality professional practice.				
PEO 4	To sensitize the need and importance to pursue for higher studies, research and exclusive preparations for competitive examinations.				
PEO 5	To provide the subject specific expertise with objective information on the professional challenges with rational methodologies towards innovative solutions.				

PROGRAMME OUTCOMES

After the successful completion of the B.E. (Civil Engineering) Degree Programme, the graduates will be able to:

- **PO1: Engineering Knowledge:** Apply knowledge of mathematics, science and engineering concepts to solve problems related to civil engineering.
- **PO2: Problem Analysis:** Identify, formulate and analyze Civil Engineering problems using the first principles of mathematics, sciences and engineering sciences and reach substantiate conclusions.
- **PO3: Design/Development of Solutions:** Design solutions for complex Civil Engineering problems and design system components satisfying standards laid by Indian Standard codes or processes to meet societal needs within realistic constraints.
- **PO4: Conduct Investigations of Complex Problems:** Develop skills, select and apply modern engineering tools such as FEM, CAD, GIS and techniques for soft computing and optimization, including prediction and modeling of complex civil engineering problems.
- **PO5: Modern Tool Usage:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.
- **PO6:** The Engineer and Society: Assess the societal needs and bring solutions with ethical principles in professional civil engineering practice with commitment, adhering to the norms of Civil Engineering practice.
- **PO7: Environmental and Sustainability:** Interact effectively with the engineering community and properly communicate with the society as well, by being able to comprehend through effective technical reports, documents, presentations and drawings, give and receive clear instructions, imperative to decision making for successful execution.
- **PO8: Ethics:** Demonstrate the knowledge and understanding of the engineering and management principles and apply these to one's work in construction, finance & asset management, public policy and administration in executing projects, as a member or leader in a team with self-confidence and courage.
- **PO9: Individual and Teamwork:** Appreciate the need to develop ability to design, implement and evaluate a field program to meet desired requirements within dynamic constraints related to economy, environment, social, political, health and safety aspects, manufacturability and sustainability, precisely the ability to engage in lifelong learning in the broadest context of technological change.
- **PO10: Communications:** Recognize the importance of Civil Engineering professional development by pursuing postgraduate studies or face competitive examinations that offer challenging and rewarding careers.
- **PO11: Project Management and Finance:** Create innovative construction materials to improve the performance of infrastructure in case of buildings and transportation systems.
- **PO12: Life-Long learning:** Develop and apply high performance structural materials and disaster-resistant systems.

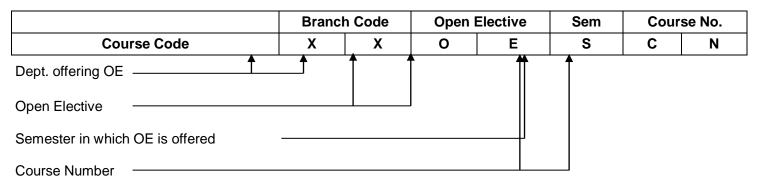
PROGRAM SPECIFIC OUTCOMES

The Civil Engineering curriculum prepares graduates to attain:

- **PSO 1:** Apply principles of engineering, basic science and mathematics to model, analyze, design civil systems and processes.
- PSO 2: Plan, operate, control, maintain and improve civil systems, components and processes.
- **PSO 3:** Prepare the students to work professionally as civil engineers.

MAPPING OF POS WITH PEOS

РО	PEO1	PEO2	PEO3	PEO4
PO1	✓			
PO2	✓			
PO3	✓	✓		
PO4	✓	✓	✓	✓
PO5		✓	✓	
PO6		✓	✓	✓
PO7			✓	✓
PO8			✓	
PO9			✓	✓
PO10		✓	✓	✓
PO11	✓	✓		
PO12	✓		✓	✓

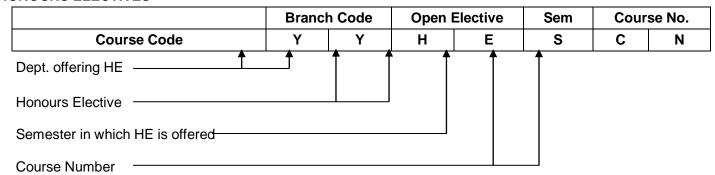

PROFESSIONAL ELECTIVES

The List of Courses under Professional Elective Category must be those courses which will be offered by the Department concerned - for the students from the same Department.

The first two characters must be the code of the branch offering the Professional Elective.

Since the last three characters are not known beforehand, the code for Professional electives can be given as follows:

P E S C N IN THE LIST OF PROFESSIONAL ELECTIVES OPEN ELECTIVES

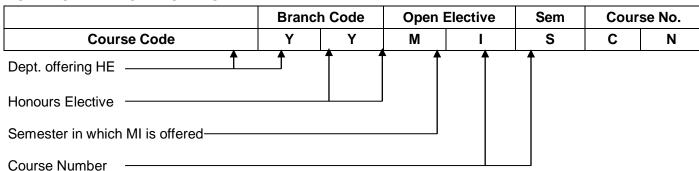

The List of Courses under Open Elective Category must be those courses which will be offered by the Department concerned - for the students from either the same Department and/or for the students from other Departments in FEAT.

In 6th and 7th Sem, the OE courses are taken from other Depts in FEAT, hence the codes are <u>Y Y O</u> <u>E 6 0 6</u> & <u>Y Y O E 7 0 5</u> in the TABLE where the first two characters are code of the branch offering the Open Elective (not known beforehand).

The 8th Sem OE can be given the code as, $\underline{X} \underline{X} \underline{O} \underline{E} \underline{8} \underline{0} \underline{1} \& \underline{X} \underline{X} \underline{O} \underline{E} \underline{8} \underline{0} \underline{2}$ in the TABLE- where XX corresponds to the branch code of the same Dept

Since the last three characters are not known beforehand, the code for open electives can be given as follows, <u>X X O E S C N</u> in the List of Open Electives.

HONOURS ELECTIVES



The List of Courses under Honours Elective Category must be those courses which will be offered by the Department concerned - for their own students.

The first two characters must be the branch code of the branch offering the Open Elective.

Since the last three characters are not known beforehand, the code for open electives can be given as follows H E S C N in the List of Honours Electives.

MINOR ENGINEERING ELECTIVES

The List of Courses under Minor Engineering Elective Category must be those courses which will be offered by the Department concerned - for the students from other Departments in FEAT.

The first two characters must be the branch code of the branch offering the Minor Engineering Elective.

Since the last three characters are not known beforehand, the code for open electives can be given as follows, $__\underline{M} \underline{I} \underline{S} \underline{C} \underline{N}$ in the List of Minor Engineering Electives.

SYLLABUS FIRST SEMESTER

Course code	ETBS1	01											
Category	Basic S	Basic Science Course											
Course title	Mathe	Mathematics - I											
Scheme	L	T	P	Credits									
and	3	3 1 0 4											
Credits													

Unit 1: Calculus (6 lectures)

Evaluation of definite integrals and their properties-Applications of definite integrals to evaluate surface areas and volumes of revolutions. Improper integral-Beta and Gamma functions and their properties.

Unit 2: Calculus (6 lectures)

Rolle's theorem-Mean value theorem. Indeterminate forms-L'Hospital's rule. Functions of two variables: Taylor's and Maclaurin's series expansions-Maxima and minima for functions of two variables.

Unit 3: Sequences and series

(10 lectures)

Convergence of sequence and series-tests for convergence: Comparison test(only for series with positive terms)-D'Alembert's ratio test-Cauchy's root test-Integral test-Leibnitz's test(Alternating series).

Unit 4: Vector Calculus (Differentiation)

(8 lectures)

Gradient, divergence and curl- directional derivative-unit normal vector-irrotational and solenoidal vectors-expansion formulae for operators involving ∇ .

Unit 5: Matrices (10 lectures)

Rank of a matrix- Symmetric, skew-symmetric and orthogonal matrices-Characteristic equation-Eigen values and Eigen vectors - Cayley-Hamilton Theorem-Diagonalization of symmetric matrices by Orthogonal transformation.

Suggested Text/Reference Books:

- 1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition, Pearson, Reprint, 2002.
- 2. Erwin kreyszig, Advanced Engineering Mathematics, 9thEdition, John Wiley &Sons,2006.
- 3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint, 2010.
- 5. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole,2005.
- 6. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
- 7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, $36^{\hbox{th}}$ Edition, 2010.

Course Outcomes:

The objective of this course is to familiarize the prospective engineers with techniques in calculus, multivariate analysis and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines.

The students will learn:

- 1. To apply differential and integral calculus to improper integrals. Apartfrom someother applications they will have a basic understanding of Beta and Gamma functions.
- 2. The fallouts of Rolle's Theorem that is fundamental to application of analysistoEngineering problems.
- 3. The tool of sequences and series for learning advanced Engineering Mathematics.
- 4. To deal with vector calculus that are essential in most branches of engineering.
- 5. The essential tool of matrices and linear algebra in a comprehensive manner.

	Mapping of Course Outcomes with Programme Outcomes														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 I														
CO1	3	3	2	-	-	-	-	-	-	-	-	-			
CO2	3	3	2	2	-	-	-	-	-	-	-	-			
CO3	3	3	2	-	-	-	-	-	-	-	-	-			
CO4	3	3	-	-	-	-	-	-	-	-	-	-			
CO5	3	3	3	2	2	-	-	-	-	-	-	-			

Course code	ETBS1	102											
Category	Basic	Basic Science Course											
Course title	PHYSI	PHYSICS											
Scheme	L	T	P	Credits									
and Credits	3	1	0	4									

Course Objectives

- To understand the ray of light to undergo the phenomenon of interference diffraction and polarization.
- To understand the principle and various application of laser.
- To develop knowledge in crystal structure and its properties.
- To understand the energy quantization of subatomic particles like electron.
- Rationalize the law of conservation of energy in solar water heater and solar cells.

Unit - I Wave optics

(9 Lectures)

Huygens' Principle, superposition of waves and interference of light by wave front splitting and amplitude splitting; Young's double slit experiment, Newton's rings, Michelson interferometer and Mach-Zehnder interferometer. Fraunhofer diffraction from a single slit and a circular aperture, the Rayleigh criterion for limit of resolution and its application to vision; diffraction gratings and their resolving power.

Unit - II Lasers (8 Lectures)

Introduction – Principles of Laser – Stimulated emission, Properties of laser beams: monochromaticity, coherence, directionality and brightness Einstein's theory of, stimulated emission A and B coefficients; amplification of light by population inversion, different types of lasers: gas lasers (He-Ne, CO₂), solid- state lasers (ruby, Neodymium), dye lasers, laser speckles, applications of lasers in science, engineering and medicine.

Unit - III Crystal Physics

(7 Lectures)

Introduction to solid Materials – crystal structure – Geometry of lattice unit cell – Bravais' lattice – crystal systems, Crystal structures of Materials –(Coordination number, Atomic radius, packing factor and packing density) – Types of crystal Lattice (Simple Cubic, Body Centered Cubic, Face Centered Cubic and Hexagonal Closed Packed) Miller Indices and their calculations – Finding Miller indices of crystal planes.

Unit - IV Quantum Mechanics

(8 Lectures)

Heisenberg uncertainty Principle –Dual nature of Matter and radiation – De Broglie's Wave length – wave Velocity and group velocity. The wave Equation, Schrödinger's time dependent and independent wave equations - The Wave function and its physical significance - The particle in a box Problem (one dimensional box) - energy quantization – Eigen values and Eigen functions.

Unit - V Energy Physics (8 Lectures)

Introduction to energy sources - Energy sources and their availability (Conventional and Non-conventional energy sources) solar energy - Methods of Harvesting solar energy - Solar heat collector, solar water heater and solar cells. Wind energy - basic principle and components of wind energy Conversion system (WECS) - application of wind energy. Biomass - Biogas Generation - Classification of Biogas plants - Properties and application of Biogas.

Text Books:

- 1. Arumugam.M. "Engineering Physics", Anuradha agencies, 2nd Edition, 1997.
- 2. John Twidell& Tony Weir, "Renewable Energy Resources", Taylor & Francis, 2005.
- 3. Avadhanulu. M.N. and Kshirsagar P.G., "A Text Book of Engineering Physics", S. Chand & Company Ltd., 7th Enlarged Revised Ed., 2005.
- 4. Gaur R.K. and Gupta S.L., "Engineering Physics", DhanpatRai Publishers, New Delhi, 2003.
- 5. Rai.G.D., "Solar Energy Utilization" Volume-1 & 2 by Khanna Publishers, New Delhi.
- 6. Pajput. R. K. Non Conventional energy sources and Utilization S. Chand Publication 2013.

Reference Books:

- 1. Rajendran.V, "Engineering Physics", Tata McGraw Hill publishers, 2009.
- 2. Rai G.D., "Non-conventional Energy sources", Khauna Publications, 1993.
- 3. Mani. P. "Engineering Physics", Dhanam Publication, Chennai, 2011.
- 4. Agarwal.M.P, "Solar Energy", S.Chand& Co., I Edn, New Delhi, 1983.

Course Outcomes:

- 1. Gain knowledge on the construction of different types of interferometer
- 2. Description on different types of laser and its application
- 3. Analyze the importance of packing factor in different crystal system
- 4. Evaluate the quantum mechanical concept of wave velocity and group velocity.
- 5. Compared the different energy resource and their availability

	Mapping of Course Outcomes with Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	3	2	-	-	-	-	-	1			
CO2	3	2	-	-	2	1	1	-	-	-	-	-			
CO3	3	1	1	-	-	1	-	-	-	-	-	-			
CO4	2	1	2	2	1	1	-	-	-	-	-	-			
CO5	3	2	-	-	1	2	1	-	-	1	-	1			

Course Code	ETBS1	03												
Category	Basic S	asic Science Course												
Course title		Chemistry												
Scheme and Credits	L	Т	P	Credits										
	3	1	0	4										

Unit - I: Water Chemistry and Surface Chemistry

Hardness of water – Softening of hard water by ion exchange method – Boiler feed water – boiler troubles – Internal treatment methods – Estimation of hardness by EDTA method – Desalination of brackish water – Reverse Osmosis. Disinfection of water – Break point chlorination – Adsorption – Types of Adsorption – Freundlich and Langmuir adsorption isotherms – Applications of adsorption.

Unit - II: Electrochemistry and Corrosion

Electrode potential – Electrochemical cell – Measurement of EMF – Nernst equation for cell EMF – Concentration cells – Electrochemical series – Conductometry – Conductance, Cell constant – Types of conductometric titrations. Potentiometry – Principle of acid base titration. Corrosion – Dry and wet corrosion – Galvanic, concentration cell and pitting corrosion – Control of corrosion by Cathodic protection method.

Unit - III: Fuels and Storage Devices

Fuels – Classification – Calorific values – HCV and LCV – Analysis of coal – Proximate and ultimate analysis – Refining of petroleum. Cracking – Fixed bed – Synthetic petrol – Fischer – Tropsch process – Flue gas analysis by Orsat apparatus. Batteries – Primary and secondary – Dry cell – Lead acid storage battery –Ni-Cd battery – Lithium battery – H₂-O₂ fuel cell.

Unit – IV: Polymers and Nano Materials

Polymers – Types of polymerization – Addition, condensation and copolymerization – Mechanism of addition polymerization (Free radical). Plastics – Thermoplastics and thermosetting plastics – Preparation, properties and uses of polyethylene, polyvinyl chloride, polystyrene, Nylon and Bakelite. Nano chemistry – introduction to nano materials. Synthesis – Precipitation, sol-gel process, electrodeposition and chemical vapour deposition methods. Carbon nano tubes, fullerenes, nano wires and nano rods.

Unit - V: Engineering Materials and Spectroscopic Techniques

Refractories – Classification, characteristics (Refractoriness, RUL, Thermal spalling, porosity) and uses, Lubricants – Classification, properties (cloud and pour point, flash and fire point, viscosity index) and applications. Principles of spectroscopy – Beer – Lambert's Law – UV – Visible and IR spectroscopy – Basic principles and instrumentation (block diagram) – Fluorescence and its applications in medicine.

Suggested Tex Books:

- 1. Jain, P.C. and Monica Jain (2010) "Engineering Chemistry" DhanpatRai& Sons, New Delhi
- 2. Dara, S.S. and Umare, S.S. (2014) "Text Book of Engineering Chemistry" S. Chand & Co. Ltd., New Delhi.
- 3. Gopalan, R., Venkappaya, D. and Nagarajan, S. (2008) "Engineering Chemistry" Tata McGraw Publications Ltd., New Delhi.
- 4. Puri, B.R., Sharma, L.R. and Pathania, M.S. (2013) "Principles of Physical Chemistry" Vishal Publication Company, New Delhi.

- 5. Sharma, Y.R. (2010) "Elementary Organic Spectroscopy, Principle and Chemical Applications" S. Chand Publishers, New Delhi.
- 6. Asim K Das and Mahua Das (2017) "An Introduction to Nanomaterials and Nanoscience" CBS Publishers.

Course Outcomes:

At the end of the course the student will be able to

- 1. Develop innovative methods in soft water production for industrial uses and Adsorption analysis.
- 2. Describe the concept of electrochemistry and its applications; corrosion and its controlling Methods.
- 3. Demonstrate the properties of fuels and applications of energy storage devices.
- 4. Evaluate the synthetic method of various polymers and the applications of Nanochemistry.
- 5. Describe the principles of UV,IR techniques and properties of Refractories and Lubricants.

	Mapping of Course Outcomes with Program Outcomes														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 P														
CO1	2	2	2	-	3	1	-	-	-	-	-	-			
CO2	3	2	1	-	-	1	1	-	-	-	-	-			
CO3	3	-	-	2	2	-	1	-	-	-	-	-			
CO4	2	-	1	-	1	1	1	-	-	-	-	-			
CO5	3	1	-	-	2	1	-	-	-	-	-	-			

Course code	ETES1	.04											
Category	Engine	Engineering Science Course											
Course title	Progra	Programming for Problem Solving											
Scheme and	L	L T P Credits											
Credits	2 1 0 3												

Unit 1: (8 lectures)

Introduction to Programming, Introduction to components of a computer system (disks, memory, processor, where a program is stored and executed, operating system, compilers etc.), Idea of Algorithm: steps to solve logical and numerical problems. Representation of Algorithm: Flowchart/Pseudocode with examples. From algorithms to programs; source code, variables (with data types) variables and memory locations, Syntax and Logical Errors in compilation, object and executable code.

Unit 2: (14 lectures)

Arithmetic expressions and precedence, Conditional Branching and Loops, Writing and evaluation of conditionals and consequent branching, Iteration and loops.

Unit 3: (12 lectures)

Arrays: Arrays (1-D, 2-D), Character arrays and Strings, Basic Algorithms: Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of equations, notion of order of complexity through example programs (no formal definition required).

Unit 4: (10 lectures)

Function: Functions (including using built in libraries), Parameter passing in functions, call by value, Passing arrays to functions: idea of call by reference, Recursion: Recursion, as a different way of solving problems. Example programs, such as Finding Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort.

Unit 5: (6 lectures)

Structure: Structures, Defining structures and Array of Structures, Pointers: Idea of pointers, Defining pointers, Use of Pointers in self-referential structures, notion of linked list (no implementation). File handling (only if time is available, otherwise should be done as part of the lab).

Suggested Text Books:

- 1. Byron Gottfried, Schaum's Outline of Programming with C,McGraw-Hill
- 2. E. Balaguruswamy, Programming in ANSI C, TataMcGraw-Hill

Suggested Reference Books:

1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice Hall ofIndia

Course Outcomes:

At the end of this course, the students will be able to

- 1. Formulate algorithms, draw flowcharts and write pseudocode for solving arithmetic and logical problems.
- 2. Develop C programs using branching and looping statements.
- 3. Implement searching and sorting algorithms and analyze the order of complexities.
- 4. Define and call simple functions by value and by reference and also to write recursive functions.
- 5. Utilize structures, pointers and files in C programming.

Course code	ETSP1	ETSP105											
Category	Engine	Engineering Science Course											
Course title	Comp	Computer Programming Laboratory											
Scheme	L	T	P	Credits									
and Credits	0 0 4 2												

[The laboratory should be preceded or followed by a tutorial to explain the approach or algorithm to be implemented for the problem given]

Tutorial 1: Problem solving using computers:

Lab1: Familiarization with programming environment

Tutorial 2: Variable types and type conversions:

Lab 2: Simple computational problems using arithmetic expressions

Tutorial 3: Branching and logical expressions:

Lab 3: Problems involving if-then-else structures

Tutorial 4: Loops, while and for loops:

Lab 4: Iterative problems e.g., sum of series

Tutorial 5: 1D Arrays: searching, sorting:

Lab 5: 1D Array manipulation

	Mapping of Course Outcomes with Programme Outcomes														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														
CO1	1	2	-	-	1	-	-	1	-	1	-	1			
CO2	2	2	3	2	-	-	-	-	-	-	-	-			
CO3	2	2	3	2	ı	I	I	ı	ı	ı	ı	ı			
CO4	1	1	-	_	1	-	-	1	-	-	-	-			
CO5	2	1	1	-	-	ı	-	-	-	-	-	-			

Tutorial 6: 2D arrays and Strings

Lab 6: Matrix problems, String operations

Tutorial 7: Functions, call by value:

Lab 7: Simple functions

Tutorial 8 &9: Numerical methods (Root finding, numerical differentiation,

numerical integration):

Lab 8 and 9: Programming for solving Numerical methods problems

Tutorial 10: Recursion, structure of recursive calls

Lab 10: Recursive functions

Tutorial 11: Pointers, structures and dynamic memory allocation

Lab 11: Pointers and structures

Tutorial 12: File handling: **Lab 12:** File operations

Laboratory Outcomes

At the end of this course, the students will be able to

- 1. Analyze program requirements and develop programs using conditional and looping statements.
- 2. Write programs for handling arrays and strings.
- 3. Create C programs with user defined functions and recursive function calls.
- 4. Utilize pointers and structures for dynamic memory allocation in C programming.
- 5. Develop C programs for handling files.

	Mapping of Course Outcomes with Programme Outcomes														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 P														
CO1	2	1	1	-	2	-	=	-	-	-	-	-			
CO2	2	1	1	-	2	-	-	-	-	-	-	-			
СОЗ	2	1	1	-	2	-	-	-	-	-	-	-			
CO4	1	1	1	-	2	-	-	-	-	-	-	-			
CO5	1	1	1	-	2	-	-	-	-	-	-	-			

Course code	ETSP1	ETSP106												
Category	Engine	Engineering Science Courses												
Course title	Engin	Ingineering Workshop / Manufacturing Practices												
Scheme	L	T	P	Credits										
and Credits	1	1 0 3 2.5												

(i) Lectures & Videos: (10 ours)

- 1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing
- 2. methods (3 lectures)
- 3. CNC machining, Additive manufacturing (1lecture)
- 4. Fitting operations & power tools (1lecture)
- 5. Electrical & Electronics (1 lecture)
- 6. Carpentry (1lecture)
- 7. Plastic molding, glass cutting (1lecture)
- 8. Metal casting (1lecture)
- 9. Welding (arc welding & gas welding), brazing (1lecture)

Suggested Text/Reference Books:

- 1. HajraChoudhury S.K., HajraChoudhury A.K. and NirjharRoy S.K., "Elements of WorkshopTechnology",Vol.I2008andVol.II2010,Mediapromotersandpublishers private limited,Mumbai.
- 2. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 4thedition, Pearson Education India Edition, 2002.
- 3. Gowri P. Hariharan and A. Suresh Babu,"Manufacturing Technology I"Pearson Education, 2008.
- 4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4thedition, Prentice Hall India,1998.
- 5. RaoP.N., "ManufacturingTechnology", Vol.IandVol.II, TataMcGrawHillHouse, 2017

Course Outcomes:

Upon completion of this course, the students will gain knowledge of the different manufacturing processes which are commonly employed in the industry, to fabricate components using different materials.

(ii) Workshop Practice: (60 hours)

- 1. Machine shop (10 hours)
- 2. Fitting shop (8hours)
- 3. Carpentry (6hours)
- 4. Electrical & Electronics(8hours)
- 5. Welding shop (8 hours (Arc welding 4 hrs + gas welding 4hrs)
- 6. Casting (8hours)
- 7. Smithy (6 hours)
- 8. Plastic molding & Glass Cutting (6hours)
- 9. Examinations could involve the actual fabrication of simple components, utilizing one orm ore of the techniques covered above.

Laboratory Outcomes:

Upon completion of this course, the students will be able to

- 1. Summarize the various conventional and latest manufacturing processes
- 2. Gain knowledge of the different manufacturing processes which are commonly employed in the industry, to fabricate components using different materials.
- 3. Acquire the ability to fabricate models of their own.
- 4. Develop skill to make simple fitting joints.
- 5. Get practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.

	Mapping of Course Outcomes with Programme Outcomes														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	2	-	-	-	-	-	-	2			
CO2	3	-	2	-	-	-	-	-	-	-	-	1			
CO3	3	-	2	-	-	-	-	-	2	-	-	-			
CO4	3	-	1	-	-	-	-	-	2	-	-	1			
CO5	3	-	2	-	-	-	-	-	1	-	-	2			

Course code	ETSP1	ETSP107						
Category	Engine	Engineering Science Courses						
Course title	Electr	Electrical Wiring and Earthing Practice Laboratory						
Scheme	L	T	P	Credits				
and Credits	-	-	2	1				

Course Objectives

- To create an awareness on the electrical safety in industrial and commercial environment.
- To enable the understanding on the principles of different types of electrical wiring.
- To offer exposure on the need for earthing and earthing practices.
- To provide practical knowledge on the various types of lighting circuits.
- To introduce methods for measuring the variables in electric circuits.
 - 1. a) Study of Basics of Safety Precautions
 - b) Study of Wiring Materials
 - 2. a) Study of types of Wiring
 - b) Fan and Fluorescent Lamp Connections
 - 3. Residential Wiring
 - 4. Stair case Wiring
 - 5. Industrial Wiring
 - 6. Series and Parallel Lamp Circuits
 - 7. Measurement of Earth Resistance
 - 8. Measurement of Frequency and Phase of AC Circuits

Course Outcomes:

At the end of the course, the students will be able to

- Familiarize with the electrical safety measures.
- Identify the different types of electrical wiring.
- know the necessity of Earthing.
- gain knowledge on the different types of lighting circuits.
- understand the methods for measuring electrical variables.

Mapping of Course Outcomes with Programme Outcomes															
	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	1	-	-	-	-	-	-	-	2			
CO2	3	-	-	2	-	-	-	-	2	-	-	2			
соз	3	-	-	2	-	-	-	-	2	-	-	2			
CO4	3	-	-	2	-	-	-	-	2	-	-	2			
CO5	3	-	-	2	-	-	-	-	2	-	-	2			

SECOND SEMESTER

Course code	ETHS201							
Category	Humanities and Social Sciences including Management courses							
Course title	English							
Scheme	L	T	P	Credits				
and Credits	3	1	0	4				

Module 1: Vocabulary Building

- 1.1 The concept of Word Formation
- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives, Count and uncount nouns.
 - 1.4 Synonyms, antonyms, and standard abbreviations.
 - 1.5 Language development Wh questions asking and answering yes or no questions.

Module 2:. Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence and Techniques for writing precisely
- 2.5 Organizing principles of paragraphs in writing

Module 3: Nature and Style of sensible Writing

- 3.1 Describing and Defining
- 3.2 Classifying and Providing examples or evidence
- 3.3 Writing introduction and conclusion
- 3.4 Comprehension
- 3.5 Precis Writing

Module 4: Writing Practices & Oral Communication

- 4.1 Listening to lectures and making notes
- 4.2 Mechanics of presentation, asking and giving instruction
- 4.3 Essay Writing Writing analytical essays and issue based essays.
- 4.4 Dialogue writing and conversation
- 4.5 Letter writing Formal and informal

Module 5: Group Discussion and Job Application

- 5.1 Characteristics and practices of group discussion
- 5.2 Job application
- 5.3 Resume preparation
- 5.4 Writing reports minutes of a meeting, accident, survey
- 5.5 E-mail etiquette

Suggested Readings:

- 1. Practical English Usage. Michael Swan. OUP. 1995.
- 2. Remedial English Grammar. F.T. Wood. Macmillan. 2007.
- 3. On Writing Well. William Zinsser. Harper Resource Book. 2001
- 4. Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- 5. Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- 6. Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press.
- 7. Raman, Meenakshi and Shama, Sangeetha Technical Communication Principles and Practice, Oxford University Press, New Delhi, 2014.

Course Outcomes:

The student will acquire basic proficiency in English including reading and listening

- 1. Comprehension, writing and speaking skills.Get an exposure of vocabulary and gain a good glossary.
- 2. Get knowledge regarding use of Grammar in speech and writing.
- 3. Acquire a knowledge of remembering, understanding, applying, analyzing, evaluating & Creating.
- 4. Determine how to articulate their ideas effectively to a variety of listeners.
- 5. Acquire ability to speak and write effectively in English.

	Mapping of Course Outcomes with Programme Outcomes														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	-	2	-	-		-		3	-	3			
CO2	-	2	-	2	-	-		-		3	-	3			
CO3	-	-	3	-	-	-		-		3	-	3			
CO4	-	-	2	3	-	-		-		3	-	3			
CO5	-	-	3	2	-	-		-		3	-	3			

Course code	ETBS	3202									
Category	Basic	Basic Science Course									
Course title	Engi	neering	Mathe	matics - II							
Scheme and	L	L T P Credits									
Credits	3	3 1 0 4									

Module 1: Multivariable Calculus (Integration)

(8 lectures)

Double integrals (Cartesian) - change of order of integration in double integrals - Changeofvariables(Cartesiantopolar) - Applications: Area as a double integral. Triple integrals (Cartesian) - Applications: Volume as a triple integral.

Module 2: Vector Calculus (Integration)

(8 lectures)

Line, Surface and Volume integrals - Gauss divergence theorem (without proof) - Green's theorem in the plane (without proof) - Stokes theorem (without proof). Verification of the above theorems and evaluation of integrals using them.

Module 3: Ordinary differential equations

(8 lectures)

First order ordinary differential equations (Linear and Bernoulli's differential equations, exact differential equations). Solution of Second order ordinary linear differential equations with constant co-efficient (method of variation of parameters only). Solution of Second order ordinary linear differential equations with variable co-efficient (Euler and Legendre's linear equations).

Module 4: Complex Variable (Differentiation)

(8 lectures)

Analytic functions and their properties-Cauchy-Riemann equations-harmonic functions - harmonicconjugate of elementary analytic functions - Construction of an analytic function. Mobius transformations.

Module 5: Complex Variable (Integration)

(8 lectures)

Cauchy theorem(without proof) –Cauchy Integral formula(without proof) – Cauchy Integral formula for higher derivatives (without proof) – zeros and poles of an analytic functions – singularities. Residues - Cauchy Residue theorem (without proof) –Evaluation of definite integral using them. Taylor's series and Laurent's series.

Suggested Text/Reference Books:

- 1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9thEdition, Pearson, Reprint,2002.
- 2. Erwin kreyszig, Advanced Engineering Mathematics, 9thEdition, John Wiley &Sons, 2006.
- 3. W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Edn., Wiley India, 2009.
- 4. S. L. Ross, Differential Equations, 3rd Ed., Wiley India, 1984.
- 5. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.
- 6. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint,
- 7. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36thEdition,2010

Course Outcomes:

The objective of this course is to familiarize the prospective engineers with techniques in multivariate integration, ordinary and partial differential equations and complex variables. It aims to equip the students to deal with advanced level of mathematics and applications that would be essential for their disciplines.

The students will learn:

- The mathematical tools needed in evaluating multiple integrals and their usage.
- The effective mathematical tools for the solutions of differential equations that model physical processes.
- The tools of differentiation and integration of functions of a complex variable that are used in various techniques dealing engineering problems.
- To deal with Complex Variable for Differentiation that are essential in most branches of engineering.
- To deal with Complex Variable for Integration that are essential in most branches of engineering..

	Mapping of Course Outcomes with Programme Outcomes														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	-	-	-	=	=	-	-	=			
CO2	3	3	2	-	-	-	-	-	-	-	-	-			
СОЗ	3	3	3	3	3	-	-	-	-	-	-	-			
CO4	3	3	2	-	-	-	-	-	-	-	-	-			
CO5	3	3	3	2	-	-	_	-	-	-	-	-			

Course Code	ETI	ES20	3		
Category	Eng	inee	ring S	Science Co	ourse
Course Title	Bas	ic E	lectri	ical and E	lectronics Engineering
Scheme and Credits	L	T	P	Credits	
	3	0	0	3	

Course Objectives

- To understand the basic laws and AC systems.
- To learn the need for earthing and protection.
- To understand the working of transformers and DC Machines.
- To know the operation and principles of AC machines.
- To learn the basic electronic and power electronic devices and their applications.

Unit-I Basic Circuits

Definition of current and voltage - Electrical circuit elements (R, L and C)- Ohm's Law- Kirchhoff's laws - mesh current and node voltage methods.

AC circuits - RMS-Average values-sinusoidal steady state response of simple RLC circuits. Introduction to 3 phase systems - Advantages.

Unit-II DC Machines and Transformers

Laws of Electromagnetism-Construction of DC Machines- DC Generator- EMF Equation - Losses - Characteristics - DC Motor- Principle of operation-Types- Characteristics - Speed control of D.C shunt and series motors.

Single-phase Transformer: Construction and Working principle, EMF equation, Losses, regulation and efficiency- Three-phase transformer: Construction and Connections

Unit-III Induction Motors and Alternators

Construction, Working principle of Three-phase induction motor - Single-phase induction motor - Types and Applications. Alternators - types -construction- working principle - EMF equation.

Unit-IV Basic Electronics

P-N junction - VI Characteristics of PN junction diode, Zener diode - Rectifier circuits- Voltage Regulator using Zener diode - Working principle and characteristics - BJT, SCR, JFET and IGBT.

Unit-V Fundamentals of Communication Engineering

Introduction – Elements of Communication Systems– Principles of Amplitude and Frequency Modulations. Digital Communication - Communication Systems: Radio, Antenna, TV, Fax, ISDN, Microwave, Satellite and Optical Fibre (Block Diagram Approach only).

TEXT BOOKS:

- 1. V.K. Mehta, Rohit Mehta, "Basic Electrical Engineering", S.Chand Publications, 2012.
- 2. Kothari DP and I.J Nagrath, "Basic Electrical and Electronics Engineering", McGraw Hill Education, 2014.
- 3. C. L. Wadhwa, "Basic Electrical Engineering", New Age International Publications, Fourth Edition, 2007
- 4. Bimbhra, P.S., "Power Electronics", Khanna Publishers, 2014.

REFERENCE BOOKS:

- 1. Thomas L. Floyd, 'Electronic Devices', 10th Edition, Pearson Education, 2018.
- 2. Albert Malvino, David Bates, 'Electronic Principles, McGraw Hill Education; 7th edition, 2017
- 3. Muhammad H.Rashid, "Spice for Circuits and electronics", 4th ed., Cengage India, 2019.
- 4. Del Toro, "Electrical Engineering Fundamentals", Second edition, Pearson Education, New Delhi, 1989.
- 5. John Bird, "Electrical Circuit theory and technology", Routledge, 5th edition, 2013.

COURSE OUTCOMES:

At the end of the course, the students will be able to

- Understand the concepts related with electrical circuits and AC fundamentals.
- Acquire knowledge on the concepts of DC machines and Transformers.
- Familiarize with the operating principle of AC machines.
- Enhance the knowledge about the basic electronic devices and their applications.
- Gain insight on the various elements of Communication systems.

	Mapping of Course Outcomes with Programme Outcomes														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	-	-	-	-	-	-	2			
CO2	3	2	1	-	-	-	=	-	-	-	-	2			
СОЗ	3	2	1	-	-	-	-	-	-	-	-	2			
CO4	3	-	1	ı	ı	-	-	ı	ı	1	ı	2			
CO5	3	-	1	-	-	-	-	-	-	-	-	2			

Course code	ETHP	204			
Category	Huma	nities ar	nd Socia	d Sciences	including Management courses
Course title	Comm	unicati	ion Skil	ls and La	nguage Laboratory
Scheme	L	T	P	Credits	
and Credits	0	0	2	1	

List of Topics

- 1. Listening Comprehension
- 2. Pronunciation, Intonation, Stress and Rhythm
- 3. Common Everyday Situations: Conversations and Dialogues
- 4. Communication a Workplace
- 5. Interviews
- 6. Formal Presentations

Suggested Software package: Glob arena Package for communicative English

The Glob arena Package consists of the following exercises

- 1. Reading comprehension
- 2. Listening comprehension
- 3. Vocabulary exercises
- 4. Phonetics
- 5. Role Play in dialogues
- 6. Auto Speak

Suggested Readings:

- 1. English Pronouncing Dictionary Daniel Jones Current Edition with CD.
- 2. Spoken English- R. K. Bansal and J. B. Harrison, Orient Longman 2006 Edn.
- 3. A Practical course in English Pronunciation, (with two Audio cassettes) by J. Sethi, KamleshSadanand& D.V. Jindal, Prentice-Hall of India Pvt. Ltd., New Delhi.
- 4. A text book of English Phonetics for Indian Students by T.Balasubramanian (Macmillan)
- 5. English Skills for Technical Students, WBSCTE with British Council, OL.

Course Outcomes:

1. Student will heighten their awareness of correct usage of English Grammar in writing and speaking.

- 2. Acquire speaking ability in English both in terms of fluency and comprehensibility.
- 3. Enhance competence in the four modes of literacy; Writing, Speaking, Reading and Listening.
- 4. Ensure student to improve their accuracy and fluency in producing and understanding spoken and written English
- 5. Exposure of the grammatical forms of English and the use of these forms in specific communicative contexts.

	Mapping of Course Outcomes with Programme Outcomes														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	3	-	-	-	-	-	-	-	3	-	3			
CO2	-	3	-	-	-	-	-	-	-	3	_	3			
соз	-	-	2	-	-	-	-	-	-	3	-	3			
CO4	=	2	-	-	-	-	=	-	-	3	-	3			
CO5	-	-	3	-	-	-	-	-	-	3	-	3			

Course code	ETSP2	05			
Category	Basic	Science	Cour	se	
Course title	Physic	cs Labo	oratory	y	
Scheme and	L	T	P	Credits	
Credits	0	0	3	1.5	

Objectives:

- To access the Rigidity modulus of wire.
- To assess the various properties of light.
- To asses the characterization of Metals.
- To analyses the thickness of micro sized objects.

List of Experiments:

- 1. Air Wedge
- 2. Newtons's Rings
- 3. Simple Pendulum
- 4. Dispersive power of the Prism
- 5. Diffraction Grating
- 6. Acoustic diffraction Grating
- 7. Compound Pendulum
- 8. Kunt's tube experiment
- 9. Young's double slit experiment
- 10. Laser Grating
- 11. Torsional Pendulum
- 12. Young's Modulus Non-uniform Bending
- 13. Young's Modulus Uniform Bending.

Course outcomes:

- 1. Acquired the knowledge of torsional properties of metals wire.
- 2. Generalized the dispersion of light through the prism.
- 3. Calculate the wavelength of monochromatic and polychromatic source of light.
- 4. Analyze diffraction patterns can be formed by light passing through a series of fine lines.
- 5. Estimate the size and shape of given unknown fine powder using laser gratings.

	Mapping of Course Outcomes with Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	-	3	2	1	=	-	-	=	=			
CO2	3	3	-	-	3	1	1	-	-	-	-	-			
CO3	3	2	2	-	3	1	1	-	-	1	-	-			
CO4	3	2	2	-	3	1	1	=	-	1	-	=			
CO5	3	2	2	-	3	1	1	-	ı	1	-	-			

Course code	ETBP2	206		
Category	Basic	Science	Course	
Course title	Chem	istry La	aborato	ry
Scheme and	L	T	P	Credits
Credits	0	_	3	1.5

Objectives:

- To list the water quality standards
- To assess the composition of an alloy
- To appreciate the practical significance of acidimetry, alkalimetry, permananganometry, conductometry and potentiometry
- To analyse quantitatively the amount of a substance present in a given sample.

List of Experiments:

- 1. Determination of surface tension and viscosity
- 2. Thin layer chromatography
- 3. Ion exchange column for removal of hardness of water
- 4. Determination of chloride content of water
- 5. Determination of the rate constant of are action
- 6. Determination of cell constant and conductance of solutions
- 7. Potentiometry determination of redox potentials and emfs
- 8. Saponification/acid value of an oil
- 9. Determination of the partition coefficient of a substance between two immiscible liquids
- 10. Adsorption of acetic acid by charcoal
- 11. Volumetric analysis

Course outcomes:

- 1. Determine the physical properties like surface tension and viscosity.
- 2. Determine rate of reactions and saponification of oil.
- 3. Calculate the quantity of adsorbate adsorbed by charcoal.
- 4. Determine the impurity from Pharmaceutical products and hardness of water.
- 5. Determine exact concentration of acid and bases present in the industrial wastes.

	Mapping of Course Outcomes with Program Outcomes														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	-	1	-	-	1	-	-	-	-	-			
CO2	2	1	-	-	-	1	-	-	-	-	-	-			
СОЗ	3	2	-	1	-	-	2	-	-	-	-	-			
CO4	3	-	1	-	-	-	-	-	-	-	-	-			
CO5	2	2	-	-	-	-	-	-	-	-	-	-			

Course code	ETSP2	207										
Category	Engine	Engineering Science Courses										
Course title	Engine	Engineering Graphics and Drafting										
Scheme	L	T	P	Credits								
and Credits	2 0 3 3.5											

Traditional Engineering Graphics:

PrinciplesofEngineeringGraphics;OrthographicProjection;DescriptiveGeometry; Drawing Principles; Isometric Projection; Surface Development; Reading a Drawing; Sectional Views; Dimensioning, True Length, Angle.

Computer Graphics:

Engineering Graphics Software; -Spatial Transformations; Orthographic Projections; Model Viewing; Co-ordinate Systems; Multi-view Projection; Exploded Assembly; Model Viewing; Animation; Spatial Manipulation; Surface Modelling; Solid Modelling; Introduction to Building Information Modelling (BIM)

(Except the basic essential concepts, most of the teaching part can happen concurrently in the laboratory)

COURSE OBJECTIVES:

- To develop the ability to produce simple engineering drawing and sketches based on current practice
- To develop the means for communication of ideas, thoughts and design of objects, related to engineering applications, to others though drawing
- To develop the skills to read manufacturing and construction drawings used in industry
- To develop a working knowledge of the layout of plant and equipment
- To develop skills in abstracting information from calculation sheets and schematic diagrams to produce working drawings for manufacturers, installers and fabricators

Unit 1: Introduction to Engineering Drawing,

Introduction to Engineering Drawing: Lettering, Dimensioning and use of drawing instruments. Conic sections: Eccentricity method of/for drawing ellipse, parabola and hyperbola- Tangent and Normal from a point on the curve.

Unit 2: Orthographic Projections,

Orthographic projections: Introduction – Projections of points Projections of Straight lines: Determination of true length and true angle of inclinations using half cone and trapezoidal methods – drawing the projections of straight lines using half cone method from true length and true angle of inclinations.

Unit 3: Projections of Regular Solids,

Projections of solids in simple position: Projections of cube, Tetrahedron, prisms, Pyramids, cone and cylinder.

Projections of solids: Auxiliary projections – projections of prisms, pyramids, cylinder and cone when the axis is inclined to only one plane.

Unit 4:Sections and Sectional Views of Right Angular Solids,

Sections of solids: Sections of prisms, pyramids, cylinder and cones – true shape of section. Developments of solids: Developments of lateral surfaces of solids using parallel and radial line methods.

Unit 5: Isometric Projections,

Isometric projections: Projections of simple solids. Conversion of pictorial view of simple objects into orthographic projections (only elevation and plan)

Overview of Computer Graphics covering,

Introduction to CAD software: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars). The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.

Customisation & CAD Drawing

consistingofsetupofthedrawingpageandtheprinter,includingscalesettings, Settingupof units and drawing limits; Orthographicconstraints,Snaptoobjectsmanuallyandautomatically;Producing drawings by using various coordinate input entry methods to draw straight lines and other basic geometric entities.

Annotations, layering & other functions

applying dimensions to objects and annotations to drawings; Setting up and use of Layers, Printing documents to paper using the print command; orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation;

Suggested Text/Reference Books:

- 1. BhattN.D.,PanchalV.M.&IngleP.R.,(2014),EngineeringDrawing,Charotar Publishing House
- 2. Shah, M.B. &Rana B.C. (2008), Engineering Drawing and Computer Graphics, Pearson Education.
- 3. Agrawal B. & Agrawal C. M. (2012), Engineering Graphics, TMH Publication.
- 4. Narayana, K.L. & P Kannaiah (2008), Text book on Engineering Drawing, Scitech Publishers.
- 5. (Corresponding set of) CAD Software Theory and User Manuals.

Course Outcomes:

- 1. Utilize drawing instruments effectively and able to present engineering drawings and sketches.
- 2. Describe the concept of orthographic, isometric projections of points, lines and regular solids.
- 3. Visualize the images and drawings in engineering perspective.
- 4. Practice sectioning of bodies like machines and equipments.
- 5. Develop their technical communication skills and promote life-long learning.

				Ma	pping	of Cou	ırse O	utcom	es wit	h Progra	ımme O	utcome	s		
	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	2	_	2	-	-	-	_	2	-	2			
CO2	3	3	3	2	2	-	-	-	2	2	-	2			
соз	2	-	2	-	-	-	-	-	-	-	-	-			
CO4	3	2	2	2	-	-	-	-	_	-	-	-			
CO5	-	-	-	_	-	-	-	_	_	3	-	3			

THIRD SEMESTER

21ETBS 301	MATHEMATICS - III	L	T	P	С
212125 001		3	1	0	4

COURSE OBJECTIVES

- To learn, partial differential equations, Fourier series, Boundary value problems.
- To learn the transforms such as Sine, Cosine, Fourier transform and Z transforms.
- To gain knowledge of the method to find the Solution of difference equations.

Unit-I

Formation of partial differential equations by eliminating arbitrary constants and arbitrary functions – Solution of standard type of first order partial differential equations – Lagrange's linear equation – Linear partial differential equations of second order with constant coefficients.

Unit-II

Dirichle's conditions – General Fourier series – Odd and Even functions – Half range sine series – Half range cosine series – Complex form of Fourier series – Parseval's identity.

Unit-III

Solutions of one dimensional wave equation – One dimensional heat equation (without derivation) – Fourier series solutions in Cartesian Co-ordinates.

Unit-IV

Fourier integral theorem (without proof) – Fourier transform pair – Sine and Cosine transforms – Properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

IInit_V

Z – transform – Elementary properties – Inverse Z – transform – Convolution theorem – Solution of difference equations using Z – transform.

TEXT BOOKS

- 1. Kandasamy P., Tilagavathy K. and Gunavathy K., Engineering Mathematics, 6th edition., (Vol I & II) S.Chand& Co Ltd. 2006, New Delhi.
- 2. Ventakataraman M.K., Engineering Mathematics, The National Publishing Co., Chennai, 2003.

REFERENCES

- 1. Veerarajan T., Engineering Mathematics, 3rd edition, Tata McGraw Hill Pub., 2005.
- 2. Singaravelu A., Engineering Mathematics, Meenakshi Publications, Chennai, 2004.
- 3. Nayaranan S, Manicavchagom Pillay T.K. and Ramanaiah G., Advanced Mathematics for Engineeirng students!, Vol.2 & 3, S. Viswanathan Publishers Pvt. Ltd., 1998.
- 4. Bali N.P. and Manish Goyal, A Textbook of Engineeirng Mathematics^{||}, 7th Edition, Laxmi Publications Pvt. Ltd., 2007.

COURSE OUTCOMES

At the end of the course the students will be able to acquire knowledge on

- Partial differential equations.
- Fourier series.
- Fourier transform.
- Z transforms and the methods of solving them.
- Solving boundary value problems.

						M	appin	g of CO	Os witl	h Pos					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2									2		
CO2	3	3	3	2									2		
CO3	3	3	3	2									2		
CO4	3	3	3	2									2		
CO5	3	3	3	2									2		

015755200	ENVIRONMENTAL STUDIES	L	T	P	С
21E1E3302	ENVIRONMENTAL STUDIES	3	0	0	3

- To realize the importance of environment for engineering students.
- To understand the basis of ecosystems.
- To make aware the student about global environmental problems and natural disasters.
- To give the ideas about advance technologies of Engineering that will useful to protect environment.

Unit-I

Introduction – Multidisciplinary nature of environmental studies – Definition, scope and importance – Need for public awareness. Natural resources – Forest resources: use and over – exploitation – deforestation – case studies. Timber extraction – mining – dams and their effects on forest and tribal people. Water resources: Use and over – utilization of surface and ground water – floods – drought – conflicts over water – dams – benefits and problems. Mineral resources: Use and exploitation – environmental effects of extracting and using mineral resources – Food resources: World food problems – changes caused by agriculture and overgrazing – effects of modern agriculture – fertilizer – pesticide problems – Energy resources: Growing energy needs – renewable and non – renewable energy sources – use of alternate energy sources. Land resources: Land as a resource land degradation – man induced landslides – soil erosion and desertification. – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

Unit-II

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological – pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem – Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries).

Unit-III

Introduction – Definition: genetic, species and ecosystem diversity – Bio geographical classification of India – Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega – diversity nation – Hot – spots of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man – wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In – situ and Ex – situ conservation of biodiversity.

Unit-IV

Definition – Cause, effects and control measures of Air pollution – Water pollution – Soil pollution – Marine pollution – Noise pollution – Thermal pollution – Nuclear hazards – Solid waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Disaster management: floods, earthquake, cyclone and landslides. Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, and watershed management – Resettlement and rehabilitation of people; its problems and concerns. – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust.

Wasteland reclamation – Consumerism and waste products – Environment Protection Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation.

Unit-V

Population growth, variation among nations – Population explosion – Family Welfare Programme – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of Information Technology in Environment and human health – Case Studies.

Field work

Visit to a local area to document environmental assets – river/forest /grassland /hill/mountain – Visit to a local polluted site – Urban/Rural/Industrial/Agricultural – Study of common plants, insects, birds – Study of simple ecosystems – pond, river, hill slopes, etc. (Field work Equal to 5 lecture hours)

TEXT BOOKS

- 1. Agarwal, K.C. Environmental Biology, Nidi Publ, Ltd. Bikaner, 2001.
- 2. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380 013, India, Email:mapin@icenet.net (R).

REFERENCES

- 1. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p.
- 2. Clark R.S., Marine Pollution, Clanderson Press Oxford (TB).
- 3. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumabai, 1196p.
- 4. De A.K., Environmental Chemistry, Wiley Eastern Ltd.
- 5. Down to Earth, Centre for Science and Environment (R).
- 6. Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment & Security. Stockholm Env. Institute Oxford Univ. Press. 473p.
- 7. Hawkins R.E., Encyclopedia of Indian Natural History, Bombay Natural History Society, Bombay (R).
- 8. Heywood, V.H & Waston, R.T. 1995. Global Biodiversity Assessment. Cambridge Univ. Press 1140p.
- 9. Jadhav, H & Bhosale, V.M. 1995. Environmental Protection and Laws. Himalaya Pub. House, Delhi 284 p.
- 10. Mckinney, M.L. & School, R.M. 1996. Environmental Science systems & Solutions, Web enhanced edition. 639p.
- 11. Mhaskar A.K., Matter Hazardous, Techno Science Publication (TB).
- 12. Miller T.G. Jr. Environmental Science, Wadsworth Publishing Co. (TB).
- 13. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p.
- 14. Rao M N. & Datta, A.K. 1987. Waste Water treatment. Oxford & IBH Publ. Co. Pvt. Ltd. 345p.
- 15. Sharma B.K., 2001. Environmental Chemistry. Geol Publ. House, Meerut.
- 16. Survey of the Environment, The Hindu (M).
- 17. Townsend C., Harper J, and Michael Begon, Essentials of Ecology, Blackwell Science (TB).
- 18. Trivedi R.K., Handbook of Environmental Laws, Rules Guidelines, Compliances and Stadards, Vol I and II, Enviro Media (R).
- 19. Trivedi R. K. and P.K. Goel, Introduction to air pollution, Techno Science Publication (TB).
- 20. Wanger K.D., 1998 Environmental Management. W.B. Saunders Co. Philadelphia, USA 499p.

COURSE OUTCOMES

At the end students can able to:

- Understand the importance of environment.
- Analyze the importance of environment in engineering.
- Apply their own ideas and demonstrate advanced technologies that will be useful to protect environment.
- Employ awareness among the society about environmental problems and natural disasters.
- Practice according to the present and future environmental issues.

						M	appin	g of CO)s with	1 Pos					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2					2	2						3	2	2
CO2	2					2	3	2	1				3	2	1
СОЗ	3					2	3	2	2	2			3	2	2
CO4						2	3	2	1				3	3	2
CO5						2	3	2					3	3	2

21ETES303	ENGINEERING MECHANICS	L	Т	P	С
212125000		3	0	0	3

- To introduce the fundamentals of forces and their effects with their governing laws.
- To understand the definitions of particle, body forces and their equilibrium conditions.
- To understand dynamics and its related motions.

Unit-I

Introduction to Engineering Mechanics covering, Force SystemsBasic concepts, Particle equilibrium in 2-D & 3-D; Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space – Resultant – Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static Indeterminancy.

Unit-II

Basic Structural Analysis covering, Equilibrium in three dimensions; Method of Sections; Method of Joints; How to determine if a member is in tension or compression; Simple Trusses; Zero force members; Beams & types of beams; Frames & Machines Centroid and Centre of Gravity covering, Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia – Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

Unit-III

Friction covering, Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack Virtual Work and Energy Method – Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (elastic and gravitational), energy equation for equilibrium. Applications of energy method for equilibrium. Stability of equilibrium.

Unit-IV

Review of particle dynamics – Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and polar coordinates). Work – kinetic energy, power, potential energy.Impulse – momentum (linear, angular); Impact (Direct and oblique).

Unit-V

Introduction to Kinetics of Rigid Bodies covering, Basic terms, general principles in dynamics; Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies; Kinetics of rigid body rotation.

Mechanical Vibrations covering, Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedom; Derivation for frequency and amplitude of free vibrations without damping and single degree of freedom system, simple problems, types of pendulum, use of simple, compound and torsion pendulums;

Tutorials from the above modules covering, To find the various forces and angles including resultants in various parts of wall crane, roof truss, pipes, etc.; To verify the line of polygon on various forces; To find coefficient of friction between various materials on inclined plan; Free body diagrams various systems including block – pulley; To verify the principle of moment in the disc apparatus; Helical block; To draw a load efficiency curve for a screw jack

TEXT BOOKS

- 1. Palanichamy, M.S. and Nagan, S., Engineering Mechanics (Statics and Dynamics)", Tata McGraw Hill Publishing Company, Ltd., New Delhi, 2010.
- 2. Natesan, S.C., Engineering Mechanics (Statics and Dynamics)||, First edition, Umesh Publications, New Delhi, 2002.

REFERENCES

- 1. Irving H. Shames (2006), Engineering Mechanics, 4th Edition, Prentice Hall
- 2. F.P. Beer and E. R. Johnston (2011), Vector Mechanics for Engineers, Vol I Statics, Vol II, Dynamics, 9th Ed, Tata McGraw Hill.
- 3. R.C. Hibbler (2006), Engineering Mechanics: Principles of Statics and Dynamics, Pearson Press.
- 4. Andy Ruina and Rudra Pratap (2011), Introduction to Statics and Dynamics, Oxford University Press.
- 5. Shanes and Rao (2006), Engineering Mechanics, Pearson Education.
- 6. Hibler and Gupta (2010), Engineering Mechanics (Statics, Dynamics) by Pearson Education.
- 7. Reddy Vijaykumar K. and K. Suresh Kumar(2010), Singer's Engineering Mechanics.
- 8. Bansal R.K.(2010), A Text Book of Engineering Mechanics, Laxmi Publications.
- 9. Khurmi R.S. (2010), Engineering Mechanics, S. Chand & Co.
- 10. Tayal A.K. (2010), Engineering Mechanics, Umesh Publications.

COURSE OUTCOMES: At the end, Students can able to

- Explain the forces and its related laws of mechanics in static and dynamic conditions.
- Analyse the forces and its motions on particles, rigid bodies and structures.
- Solve the moment of inertia of any sections and masses for the structural members.
- Understand the principles of kinetics and dynamics.
- Understand the concept of particle dynamics in motion.

						M	apping	g of CC	s with	POs					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2			2				1			3	3	2
CO2	3	3	2			2				1			2	3	1
CO3	3	3	3	2		2				1			3	2	1
CO4	3	3	3	2		2				1			2	3	2
CO5	3	3	3	2		2				1			3	3	2

21CEES304	CONSTRUCTION ENGINEERING	L	T	P	С
210225001	construction Enum Education	2	0	0	2

- To expose the students to construction practice through an understanding of different types of construction materials and their properties.
- To understand the techniques of construction, different finishing works and remedial practices for distressed structures.
- To impart knowledge of modern construction materials and equipments.

Unit-I

Stones (Dressed) – Bricks – Cement – Steel – Sand and Quarry Dust – Timber – FRP (Fibre Reinforced Polymer) – Composite materials – Physical and Chemical Properties – Manufacturing Process – Classification – Test on materials – IS Standards and Specifications for use in construction as per SP 21: 1983.

Unit-II

Introduction – Types of Soils – Classification of soils as per IS standards – Cohesion and Adhesion of soil – Bearing capacity of soil – Methods of assessing Bearing capacity of soils – Types of foundations – Shallow foundations – Deep foundations – Special types of foundations for Shore and Offshore structures – Foundations with Rock Anchors.

Unit-III

Introduction – Masonry – Types of Masonry – Reinforced Cement Concrete (RCC) works like Footings, Columns, Plinth Beams, Lintels, Sill slabs, Sunshades, Roof Beams and Roof Slabs – Fabrication of Steel – Bar Bending as per IS Standards (SP 34: 1987) – Cover Blocks – Placing of Bars in Formwork – Types of Roofing systems – Types of Stairs – Types of Doors, Windows and Ventilators – Methods of Termite proofing – Methods of Damp proofing.

Unit-IV

Types of floor finishes – Mud flooring, Cement flooring, Ceramic tile flooring, Marble and Granite flooring, Wooden flooring, flooring with puffed panels – Plastering (Interior and Exterior) – Pointing for walls and floors using grouts – White washing – Colour washing with different colour shades available in the markets – Painting – Types of painting for Interior and Exterior application – Formwork (Shuttering or Scaffolding) – Types of Formwork – Use of Shoring and Underpinning.

Unit-V

Introduction – Glass – Ceramics – PVC – UPVC – Refractory – Aluminium – Lightweight Concrete blocks – Poly Carbonate sheets – Insulated Puffed sheets – Sealant joints – Uses in construction. Cracks in buildings – Causes – Methods of repairs – Equipments used for repair works.

TEXT BOOKS

- 1. Arora.S.P, —Building Construction Technology (Including Engineering Materials), 2010.
- 2. Rangwala.S.C, —Building Construction, Charter Publishing House Pvt. Limited, 2009.

REFERENCES

- 1. Sharma and Kaul, —Building Construction, S.Chand & Company, New Delhi, 1987.
- 2. Rajput.R.K, -Engineering Materials, S.Chand & Company, New Delhi. 2008.
- 3. Dr.Punmia.B.C, —Construction Engineering, Laxmi Publishers Private Limited, New Delhi, 1993.
- 4. Gupta R.K. —Civil engineering Materials and Construction Practices, Jain Brothers, (New Delhi).

STANDARDS

- 1. SP 21: 1983, Handbook on Summaries of Indian Standards for Building Materials, Bureau of Indian Standards, New Delhi.
- 2. SP 34: 1987, Handbook on Concrete Reinforcement and Detailing, Bureau of Indian Standards, New Delhi.

COURSE OUTCOMES

At the end of the course students will be able to

Compare the properties of most common and advanced building materials.

- Acquire knowledge of testing of construction materials, their strength requirements and applications.
- Recognize the functions of different building components.
- Understand the usage of modern building materials and construction equipments.
- Apply techniques to repair buildings.

						М	apping	g of CC	s with	POs					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2				1				1			2	3	3
CO2	3	3	1			2				1			3	3	3
CO3	1		3			2				1			3	3	3
CO4	3		2			2				1			3	3	3
CO5	1	2	2			2				1			2	3	3

21CEPC305	INTRODUCTION TO FLUID MECHANICS	L	T	P	C
21021000	MINOSOCIION IO I SOIS MECIMINICS	3	1	0	4

- To introduce the concepts of fluid mechanics useful in Civil Engineering applications.
- To exposure the students to fluid Statics, kinematics and dynamics.
- For measurement of pressure, computations of hydrostatic Forces on structural components and the concepts of Buoyancy all find useful applications in many engineering problems.

Unit-I

Basic Concepts and Definitions – Distinction between a fluid and a solid; Density – Specific weight – Specific gravity – Kinematic and dynamic viscosity; variation of viscosity with temperature – Newton law of viscosity; vapour pressure – boiling point – cavitation; surface tension – capillarity – Bulk modulus of elasticity – compressibility.

Unit-II

Fluid Statics – Fluid Pressure: Pressure at a point – Pascals law – pressure variation with temperature – density and altitude. Piezometer – U – Tube Manometer – Single Column Manometer – U – Tube Differential Manometer – Micromanometers. pressure gauges – Hydrostatic pressure and force: horizontal – vertical and inclined surfaces. Buoyancy and stability of floating bodies.

Unit-III

Fluid Kinematics – Classification of fluid flow: steady and unsteady flow; uniform and non – uniform flow; laminar and turbulent flow; rotational and irrotational flow; compressible and incompressible flow; ideal and real fluid flow; one – two and three dimensional flows; Stream line – path line – streak line and stream tube; stream function – velocity potential function. One – two – and three – dimensional continuity equations in Cartesian coordinates.

Unit-IV

Fluid Dynamics – Surface and body forces; Equations of motion – Euler's equation; Bernoulli's equation – derivation; Energy Principle; Practical applications of Bernoulli's equation : venturimeter – orifice meter and pitot tube; Momentum principle; Forces exerted by fluid flow on pipe bend; Vortex Flow – Free and Forced.

Unit-V

Dimensional Analysis and Dynamic Similitude – Definitions of Reynolds Number – Froude Number – Mach Number – Weber Number and Euler Number; Buckingham's π – Theorem.

TEXT BOOKS

- 1. Modi P.M. and S.M.Seth, Hydraulics and Fluid Mechanicsl, Standard Book House.
- 2. Bansal, R.K. Fluid Mechanics, Lakshmi Publications Pvt., Ltd.

REFERENCES

- 1. Ojha C.S.P., R. Berndtsson and P.N. Chadramouli, Fluid Mechanics and Machineryl, Oxford University Press, 2010.
- 2. Subramanya, K., Theory and Applications of Fluid Mechanics, Tata McGraw Hill.
- 3. Daugherty R.L., J.B. Franzini and E.J.Finnemore, Fluid Mechanics with Engineering Applications, International Student Edition, Mc Graw Hill.
- 4. Munson, B.R., Okiishi, T.H., Huebsch, W.W. and Rothmayer, A.P., 2013. Fluid mechanics. Singapore: Wiley.

COURSE OUTCOMES

- Understand definitions of the basic terms used in fluid mechanics
- Understand the broad principles of fluid statics, kinematics and dynamics
- Understand classifications of fluid flow
- Apply the continuity, momentum and energy principles
- Apply dimensional analysis

						M	apping	g of CC)s with	ı POs					
	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2											3	1	
CO2	3	2											3	2	
CO3	3	2		2						1			3		
CO4	3	3	2	1						1			3	2	
CO5	3	3	2	2						1			3	2	

21CZPC306	CONCRETE TECHNOLOGY	L	Т	P	С
21021000	CONCRETE TECHNOLOGY	3	1	0	4

- To develop systematic knowledge about the nature and basic properties of the ingredients of concrete.
- To familiarize testing procedures of fresh and hardened concrete.
- To introduce fundamentals and principles of mix design.

Unit-I

Portland cement – Definition – History – Composition – Hydration of Portland cement – Stiffening and Hardening of cement paste – Specification as per IS Code 269 – 1989 – Types of Portland cement – Physical and Chemical Properties of cement – Testing of cement.

Unit-II

Aggregates – Natural and Mineral aggregates – Characteristics of aggregates and their significance – Testing of aggregates – Importance of aggregates in concrete – Specifications as per IS Code 2386 (Part I to VIII) – 1963 – Specifications as per IS Code 383 – 1970 – Water Testing – Specifications.

Unit-III

Concrete ingredients – Manufacturing process – Storing – Batching – Mixing – Transporting – Placing – Finishing – Curing – Properties of fresh concrete – Workability measurements – Testing methods – Seggregation – Bleeding – Slump loss – Concrete at early age – Setting time – Concrete admixture and its types.

Unit-IV

Hardened concrete – Mechanical Properties and their significance – Testing methods as per IS Code 516 – 1959 – Compressive strength of concrete and its factors – Short term and long term properties – Drying shrinkage – Creep – Modulus of elasticity – Resistance to dimensional changes – Resistance to weather – Resistance to chemical attack – Durability of concrete.

Unit-V

Objectives of mix design – Concept of concrete mix proportioning – Methods of mix proportioning – IS Code 10262 – 2009 and ACI Committee 211.1.91 method – Fly ash based mix design – Effect of replacement materials in mix design.

TEXT BOOKS

- 1. Mehta, P.K. and Monteiro, P.J.M., Concrete, Microstructure, Properties and Materials, Indian Concrete Institute, 1997.
- 2. Shetty, M.S., Concrete Technology, S.Chand & Co., New Delhi, 2002.

REFERENCES

- 1. Neville, A.M., Properties of Concrete, Pitman Publishing Limited, London, 2011.
- 2. Gambhir, M.L., Concrete Technology, Tata McGraw Hill Co., New Delhi, 2004.
- 3. Neville, A.M. and Brooks J.J., Concrete Technology, Pearson Education, Indian Reprint, 2002.
- 4. Gupta, Y. O. "Concrete technology and good construction practices." New Age International Publishers, New Delhi, 2013.

STANDARDS

1. IS: 269 – 1989, Specification for Ordinary Portland cement 33 Grade (Fourth Revision), 1998.

- 2. IS: 2386 (Part I to VIII) 1963, Method of Tests for Aggregate for Concrete, Bureau of Indian Standards, New Delhi.
- 3. IS: 383 1970, Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, Bureau of Indian Standards, New Delhi.
- 4. IS: 516 1959, Method of Tests for Strength of Concrete, Bureau of Indian Standards, New Delhi.
- 5. IS: 10262 2009, Recommended Guidelines for Concrete Mix Design, Bureau of Indian Standards, New Delhi.
- 6. ACI Committee 211.1,91 Standard Practice for Selecting Proportions for Normal, Heavy weight and Mass Concrete, ACI Manual of Concrete Practice Part 1, 1991, American Concrete Institute, Detroit.
- 7. SP 23:1982, Handbook on Concrete Mixes

COURSE OUTCOMES

- Identify the properties of cement, aggregate and concrete.
- Acquire knowledge of testing of cement, aggregate and concrete and their strength requirements.
- Understand the importance of manufacturing process of concrete.
- Recognize the functions of different concrete admixtures and its types.
- Understand the concept of concrete mix proportioning.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			2					2			2		3	1	3
CO2			2					2			2		3	2	3
CO3								2			2		3	1	3
CO4			2					2			2		3	3	3
CO5			2					2			2		3	3	3

L	T	P	C
0	0	3	1.5

- To introduce the student to basic principles of Building drawing.
- To learn to draft plan, elevation and sectional views of buildings in accordance with development and control rules satisfying orientation and functional requirements as per National Building Code.
- To enable the students to develop manual and computer aided drafting skills for planning.

Exercises

- 1. Conventional symbols.
- 2. Paneled and flush doors.
- 3. Paneled and glazed windows.
- 4. Lean to roof and small sheds.
- 5. Residential buildings with fully tiled roof with hips & valleys.
- 6. R.C.C. flat roofed single roomed building.
- 7. Residential building with single bedroom (load bearing structure).
- 8. Residential building with double bedroom (framed structure).
- 9. Residential building with R.C.C. roofed hips & valleys.
- 10. Residential double storied building with R.C.C. roof.
- 11. Library building with R.C.C. flat roof.
- 12. Primary health centre for rural areas with R.C.C. flat roof.
- 13. Single storied school building with R.C.C. flat roof.
- 14. Bank building with R.C.C. flat roof.
- 15. Mini shopping mall building.

TEXT BOOKS

- 1. Shah. M.G., Kal.C.M. and Patki. S.Y., Building drawing with an integrated approach to Built Environment, Fourth Edition, 1996.
- 2. Kaleem. S., Zaidi. A. and Suhail Siddiqui, Drawing and Design of Residential and commercial buildings, Standard Publications, 2001.

REFERENCES

- 1. Venugopal. K. and Praburaja. V., Building Drawing, New Age International Publishers, 1996.
- 2. Rangwala. S.C., Civil Engineering Drawing.
- 3. Verma. B.P., Civil Engineering Drawing and House planning.
- 4. Clois E. Kicklighter., Architecture, Residential Drawing and Design, The Good Heart Willcox Company Inc., 2000.
- 5. Donald E. Hepler and Paul I. Wallach., Architecture, Drafting and Design, Tata McGraw Hill Book Co., New Delhi, 1998.

COURSE OUTCOMES

- Understand conventional symbols used in drawing.
- Draft plan, elevation and sectional views of doors & windows, lean to roof and different types of buildings.
- Understand the regulations as per National Building Code.
- Identify the functional requirements and building rules.
- Understand and usage of computer tool to draw a plan of various buildings

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3			3	1			1			1		2	3	3
CO2	1	1	3	2	3	1	1	3					2	3	3
CO3	1		3	2	1	2		2					2	3	3
CO4		1	3	2	1	2		2					2	3	3
CO5	1		2	3	3	1		3					2	3	3

21CECP308	FLUID MECHANICS LABORATORY	L	T	P	С
21CECF308	FLUID MECHANICS LABORATORY	0	0	3	1.5

- To understand the practical methods for determination of Co-efficient of discharge.
- To study characteristic features of pumps and turbines by carrying out experiments.
- To understand the significance and role of such utilities in their further course of study.

LIST OF EXPERIMENTS

- 1. Measurement of viscosity
- 2. Study of Pressure Measuring Devices
- 3. Stability of Floating Body
- 4. Hydrostatics Force on Flat Surfaces/Curved Surfaces
- 5. Verification of Bernoulli's Theorem
- 6. Venturimeter
- 7. Orifice meter
- 8. Impacts of jets
- 9. Flow Visualisation Ideal Flow
- 10. Length of establishment of flow
- 11. Velocity distribution in pipes
- 12. Laminar Flow
 - Determination of Co-efficient of discharge of Mouthpiece
 - Determination of Co-efficient of discharge of **Venturimeter**
 - Determination of Co-efficient of Head loss due to Sudden Change in Section
 - Determination of Co-efficient of Head loss due to **Friction in Pipes**
 - Determination of Co-efficient of discharge of Rectangular Notch
 - Determination of Co-efficient of Impact of Jet on Vanes
 - Determination of **Metacentric Height** of a floating vessel.

REFERENCES

- 1. Subramanya K., Flow in open channels, Tata McGraw Hill, New Delhi 2000.
- 2. Modi P.N. and Seth S.M., Hydraulics and Fluid Mechanics, Standard Book House, New Delhi, 2002.
- 3. Nagaratnam, S., Fluid Machines and Systems, Tata McGraw Hill, 1989.
- 4. Aris, R. (1989). Vectors, tensors, and the basic equations of fluid mechanics. New York, USA: Dover Publications.

COURSE OUTCOMES

- Determine the rate of flow using various experiments.
- Study the various losses occured in different sections
- Compute forces exerted using impact of jet on different vanes.
- Develop characteristics curves to determine the specific speed of pumps.
- Develop characteristics curves to determine the specific speed of turbines.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2		2		1			1				3	1	3
CO2	2	2		2		1			1				3	1	3
CO3	2	2		2		1			1				3	1	3
CO4	2	2		2		1			1				3	1	3
CO5	2	2		2		1			1				3	1	3

21CZCP309

CONSTRUCTION MATERIALS LABORATORY

L	T	P	С
0	0	3	1.5

COURSE OBJECTIVES

To facilitate the understanding of the behavior of construction materials such as

- Fine aggregates
- Coarse aggregate
- Concrete and bricks

EXERCISES

I. TEST ON FINE AGGREGATES

Grading of fine aggregates

Test for specific gravity and test for bulk density

Compacted and loose bulk density of fine aggregate

II. TEST ON COARSE AGGREGATE

Determination of impact value of coarse aggregate

Determination of elongation index

Determination of flakiness index

Determination of aggregate crushing value of coarse aggregate

TEST ON CONCRETE

Test for Slump

Test for Compaction factor

Test for Compressive strength - Cube & Cylinder

Test for Flexural strength

IV. TEST ON BRICKS AND BLOCKS

Test for compressive strength of bricks and blocks

Test for Water absorption of bricks and blocks

Determination of Efflorescence of bricks

Test on tiles

REFERENCES

- 1. Construction Materials Laboratory Manual, Anna University, Chennai 600 025.
- 2. IS 4031 (Part 1) 1996 Indian Standard Method for determination of fineness by drysieving.
- 3. IS 2386 (Part 1 to Part 6) 1963 Indian Standard methods for test for aggregate for concrete.
- 4. IS 383 1970 Indian Standard specification for coarse and fine aggregates from natural sources for concrete.

COURSE OUTCOMES

The students will have the required knowledge in the area of

- Behaviour of construction materials
- Properties of construction materials
- Properties of construction elements
- Behaviour of fresh and hardened concrete
- Mechanical and durable properties of bricks and blocks

	Mapping of COs with Pos														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2					3		2			1		3	2	3
CO2	2					3		2			1		3	2	3
CO3	2					3		2			1		3	3	3
CO4	2					3		2			1		3	3	3
CO5	2					3		2			1		3	2	3

FOURTH SEMESTER

21CEBS401	PROBABILITY & STATISTICS FOR	L	T	P	C
21CEB5401	CIVIL ENGINEERING	3	0	3	3

COURSE OBJECTIVES

- To introduce the fundamentals of probability and statistics to civil engineering students in order to deal with uncertainty in civil engineering systems
- To emphasise the practical aspects of the use of these methods
- To identify the strength relationship between variables and using regression and corelation.

Unit-I: Data Description and Treatment & Fundamentals of Probability

Introduction – Decision making in Engineering – Types of uncertainty Data description and treatment – Classification of data – nominal, ordinal, internal and ratio scales – Graphical description of the data – histograms and Frequency diagrams – Descriptive measures: Central tendency measures, dispersion measures, percentiles, Box – and – Whisker plots – applications Fundamentals of Probability – Sample sets, ample Spaces and Events – basic operations – mathematics of probability – conditional probability – Baye's theorem Random variables and their probability distributions – probability of discrete random variables – probability of continuous random variables – moments – applications.

Unit-II: Probability Distributions for Discrete and Continuous Random Variables

Probability distributions for discrete random variables – Bernoulli's, binomial, geometric and poisson distributions – applications

Probability distributions for continuous random variables – Uniform, normal, log normal, exponential and gamma distributions – statistical probability distributions – Students' t, Chi – square and F – distributions – Extreme value distributions – Gumbel and Weibul distributions – applications.

Unit-III: Fundamentals of Statistical Analysis and Hypothesis Testing

Fundamentals of statistical analysis – Estimation of parameters – Properties of estimators: bias, precision, , Mean Square Error (MSE) – Estimation of Moments – Method of moments, Method of Maximum likelihood – Sampling distributions of mean and variance – applications Hypothesis Testing: Hypothesis tests of means – Hypothesis tests of variance – Tests of distributions – applications.

Unit-IV: Analysis of Variance, Confidence intervals and Sample size determination

Analysis of Variance – Test of population means – multiple comparisons in the ANOVA test: Duncan's multiple range test, Scheffe's test – Test of population variances – Randomized Block Design model – applications.

Confidence intervals and Sample size determination – General procedure – confidence intervals for the mean, variance – sample size determination – applications.

Unit-V: Correlation and Regression Analysis

Correlation analysis – graphical analysis – bivariate correlation – separation of variations – computation of correlation coefficient – applications.

Introduction to regression – Zero – intercept model – principle of least squares – fitting linear bivariate model – SEE – applications.

Multiple Regression analysis – calibration of multiple linear models – applications.

TEXT BOOKS

- 1. Bilal M. Ayyub and Richard H. McCuen, 2003, Probability, Statistics, and Reliability for Engineers and Scientists, Second Edition, Chapman & Hall/CRC.
- 2. Ravichandran L., Probability and statistics for engineers 2000, WILEY INDIA publishers.

REFERENCES

- 1. Holicky, Milan, 2013, Introduction to Probability and Statistics for Engineers, Springer Verlag Berlin Heidelberg.
- 2. Carlton, Matthew A., Devore, Jay L., 2017, With Applications In Engineering, Science, And Technology, Springer International Publishing.
- 3. Devore, Jay L., Berk, Kenneth N., 2012, Modern Mathematical Statistics With Applications, Springer Verlag New York.
- 4. Montgomery, D.C., Runger, G.C. And Hubele, N.F., 2011. Engineering Statistics. Wiley.

COURSE OUTCOMES

The students should be able to

- Collect data on a problem and describe the data using graphical and descriptive measures; develop a probabilistic model for the problem; perform probability operations and evaluations;
- Use discrete and continuous random variables to model some aspects of the problem; evaluate the probabilistic characteristics of functions of random variables
- Perform statistical analyses of the data and hypotheses testing
- Perform analysis of variance, parameter estimation, confidence interval selection, and selection of sample sizes
- Perform correlation and regression analyses for fitting a curve or model to data and formulate algorithms to solve problems

	Mapping of COs with Pos														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		2	3		3			2				2		2
CO2	3	2	2											1	
CO3		3				1			1					3	3
CO4	2														2
CO5		3	1	2				2	3				3	2	

010750400	INTRODUCTION TO SOLID MEGILANICS	L	Т	P	С
21CZES402	INTRODUCTION TO SOLID MECHANICS	2	0	0	2

COURSE OBJECTIVES

- To introduce to continuum mechanics and material modelling of engineering materials based on first energy principles
- To understand the strength, stiffness (deformation characteristics), and stability of the various members in a structural system.
- The behaviour of a member depends not only on the fundamental laws that govern The equilibrium of forces, but also on the mechanical characteristics of the material.

Unit-I: Simple Stresses and Strains

Concept of stress and strain, St. Venant's principle, stress and strain diagram, Elasticity and plasticity – Types of stresses and strains, Hooke's law – stress – strain diagram for mild steel – Working stress – Factor of safety – Lateral strain, Poisson's ratio and volumetric strain – Elastic moduli and the relationship between them – Bars of varying section – composite bars – Temperature stresses. Strain Energy – Resilience – Gradual, sudden, impact and shock loadings – simple applications. Compound Stresses and Strains – Two dimensional system, stress at a point on a plane, principal stresses and principal planes, Mohr circle of stress, ellipse of stress and their applications. Two dimensional stress – strain system, principal strains and principal axis of strain, circle of strain and ellipse of strain – Relationship between elastic constants.

Unit-II: Shear Force and Bending Moment

Bending moment and Shear Force Diagrams – Bending moment (BM) and shear force (SF) diagrams.BM and SF diagrams for cantilevers simply supported and fixed beams with or without overhangs. Calculation of maximum BM and SF and the point of contra flexure under concentrated loads, uniformly distributed loads over the whole span or part of span, combination of concentrated loads (two or three) and uniformly distributed loads, uniformly varying loads, application of moments.

Unit-III: Flexural and Shear Stresses

Flexural stresses – Theory of simple bending – Assumptions – Derivation of bending equation: M/I = f/y = E/R – Neutral axis – Determination of bending stresses – Section modulus of rectangular and circular sections (Solid and Hollow), I,T, Angle and Channel sections – Design of simple beam sections.

Shear Stresses – Derivation of formula – Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T angle sections.

Unit-IV: Slope and Deflection, Torsion and Springs

Slope and deflection – Relationship between moment, slope and deflection, Moment area method, Macaulay's method. Use of these methods to calculate slope and deflection for determinant beams.

Torsion – Derivation of torsion equation and its assumptions. Applications of the equation of the hollow and solid circular shafts, torsional rigidity, Combined torsion and bending of circular shafts, principal stress and maximum shear stresses under combined loading of bending and torsion.

Analysis of close - coiled - helical springs.

Unit-V: Thin and Thick Cylinders

Thin Cylinders and Spheres – Derivation of formulae and calculations of hoop stress, longitudinal stress in a cylinder, and sphere subjected to internal pressures.

TEXT BOOKS

- 1. Sadhu Singh, Strength of Materials, Khanna Publishers, New Delhi, 2000.
- 2. Vaidyanathan. R., Perumal.P. and Lingeswari.S., Mechanics of Solids and Structures, Volume I, Scitech Publications Private Limited, Chennai, 2006.

REFERENCES

- 1. Timoshenko, S. and Young, D.H., Elements of Strength of Materials, DVNC, New York, USA.
- 2. Kazmi, S.M.A., Solid Mechanics, TMH, Delhi, India.
- 3. Hibbeler, R.C., Mechanics of Materials. 6th ed. East Rutherford, NJ: Pearson Prentice Hall, 2004.
- 4. Crandall, S.H., N.C. Dahl, and T.J. Lardner. An Introduction to the Mechanics of Solids. 2nd ed. New York, NY: McGraw Hill, 1979.
- 5. Laboratory Manual of Testing Materials William Kendrick Hall.
- 6. Mechanics of Materials, Ferdinand P. Beer, E. Russel Jhonston Jr., John T. Dewolf, TMH, 2002.
- 7. Strength of Materials by R. Subramanian, Oxford University Press, New Delhi.

COURSE OUTCOMES

On completion of the course, the student will be able to:

- Describe the concepts and principles, understand the theory of elasticity including strain/displacement and Hooke's law relationships; and perform calculations, relative to the strength and stability of structures and mechanical components;
- Define the characteristics and calculate the magnitude of combined stresses in individual members and complete structures; analyze solid mechanics problems using classical methods and energy methods;
- Analyse various situations involving structural members subjected to combined stresses by application of Mohr's circle of stress; locate the shear center of thin wall beams
- Calculate the deflection at any point on a beam subjected to a combination of loads; solve for stresses and deflections of beams under unsymmetrical loading
- Solve torsion problems in bars and thin walled members.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3										2		
CO2	3	2	2										2		
CO3	3	3	3	2		2							2		
CO4	3	2	2	2									2		
CO5	3	3	3										2		

21 CEPC 403	SURVEYING	L	T	P
210210 400	SORVETING	4	0	0

- To introduce the principles of various surveying methods and survey instruments.
- To expose students to Levelling by several methods.
- To learn to handle survey instruments and Area and Volume computations.
- To learn to handle survey instruments Theodolite and Tacheometer
- To learn to measure horizontal and vertical angle, heights and distances.
- To solve problems related to curve settings and astronomical
- To understand applications of surveying to civil engineering projects.

Unit I

Introduction and Principles of surveying – Classification – Chain surveying – Chaining and ranging - Cross- staff – offset – measurement of area by chain traversing – error – obstacles in chain surveying – problems.

Compass surveying – Prismatic compass only – Instruments – Bearing of survey lines – systems and conversions – Local attraction – Latitude and departure – Traversing – Traverse adjustment of closing errors.

Unit II

Plane Table surveying – instruments and accessories – advantages and disadvantages of plane table surveying – methods – radiation, intersection, traversing, resection – Two- and three-point problems – errors in plane table surveying.

Levelling - MSL - Datum - Technical terms - level and its types - staffs and its types Temporary adjustment - principles of levelling - Reduction of levels - methods - problems. Different types of levelling - correction for curvature - refraction - gradient of a line - problems. - Contours - Contour interval - Methods of contouring - uses.

Unit III

Computation of area – mid-ordinate – Trapezoidal method – Simpson's method – Computation of volume – methods – L/S, C/S – Earth work excavation – storage capacity of reservoir – Setting out buildings – positioning of structure – foundation setting out.

Theodolite surveying – Vernier theodolite – Temporary and permanent adjustments – Measurement of horizontal and vertical angles – Methods of repetition and reiteration – errors in theodolite surveying – elimination of errors

Unit IV

Trigonometric Survey – heights and distances – base accessible – base inaccessible – single and double plane methods – numerical problems.

Tacheometric surveying – Principles – Methods – Stadia system –Fixed and Movable hair methods – Methods with staff held vertical and normal – Analytic lens – Subtense bar – Tangential method.

Unit V

Curves – classification – necessity – elements of simple curve – calculation – degree of simple curve – setting out a simple curve – various methods – difficulties in setting out simple curve – numerical problems related to simple curves only.

Field astronomy – geometry of sphere – spherical triangle – solution – Napier's rule – various co-ordinate systems – shortest distance between two points – earth surface – Equation of time.

Project works: General requirements and specifications for Engineering project surveys,

Reconnaissance, Preliminary and Locations surveys for highway, railway and canals; Layout of culverts, canals, bridges and buildings.

TEXT BOOKS:

- 1. Agor. R, "A text book on Advanced Surveying", Khanna Publishers, 4th Edition, New Delhi, 2007.
- 2. Arora. K.R., "A text book on Surveying Volume I and II", Standard Publishers, New Delhi, 2006.
- 3. Punmia, B.C. Surveying Vol.I and II, Standard Publishers, 1994.

REFERENCES:

- 1. Duggal, S.K. Surveying Vol. I and II, Tata McGraw Hill, 2004.
- 2. Punmia, B.C., Ashok K.Jain and ArunK.Jain, "Surveying Volume I & II", Laxmi Publications, 2005.

3. Kanetkar, T.P. and Kulkarni, S.V., "Surveying and Levelling", Pune VidyarthiGrihaPrakashan, 1988.

COURSE OUTCOMES:

At the end of the course students will be able to

- 1. Possess knowledge about chain surveying, compass surveying, plane table surveying and Levelling.
- 2. Gain knowledge about Survey Instruments Theodolite, Tacheometer, their care and adjustments.
- 3. Use all surveying equipments, prepare LS&CS, contour maps and carry out surveying works related to land and civil engineering projects.
- 4. Plan a survey, taking accurate measurements, field booking, plotting and adjustment of traverse know the astronomical surveying
- 5. Plan a survey for applications such as road alignment and height of the building undertake measurement and plotting in civil engineering

			MAP	PING	PROG	RAMM	E OU	COM	ES WI	TH COU	RSE O	UTCOM	ES		
Cos	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2				3		1			1		3	2	3
CO2	2	1	3			3			2		2	2	3	2	3
CO3	2		2		3				2		3		3	1	3
CO4		2				2							3	1	3
CO5	2		3			3			3		2	2	3	2	3

01CEDC404	ADDITED HYDDAILLIC ENCINEEDING	L	T	P	С
21CEPC404	APPLIED HYDRAULIC ENGINEERING	3	0	0	3

COURSE OBJECTIVES

- To introduce the students to various hydraulic engineering problems like open channel flows and their computations.
- To understand the methods of dimensional analysis.
- To impart knowledge on characteristics and working principles of hydraulic machines.

Unit-I

Types of flow in open channels – geometrical properties of channel sections – velocity distribution in a channel section – Chezy's formula – Manning's formula – Most economical sections of a channel – rectangular, trapezoidal, triangular and circular sections – uniform flow computations – specific energy and critical depth – critical flow and its computation.

Unit-II

Gradually varied flow – dynamic equation – classification of channel bottom slopes – classification of water surface profiles – characteristics of surface profiles – integration of the varied flow equation by the step method.

Hydraulic jump in rectangular channels – types of hydraulic jumps – surges in open channels – positive and negative surges.

Unit-III

Dimensions – Dimensional homogeneity – Methods of dimensional analysis – Rayleigh's method – Buckingham's □ – method – use of dimensional analysis.

Model investigation – similitude – types of similarities – dimensionless numbers – Reynolds, Froude, Euler, Mach and Weber numbers – Model laws – types of models – application of dynamic similarity to specific model investigations – submerged objects and partially submerged objects.

Unit-IV

Impulse – momentum principle – dynamic force exerted by fluid jet on stationary flat plate: (a) plate normal to jet (b) inclined plate – force on moving flat plate – force on curved stationary plate – force on single moving curved plate – fluid jet on moving curved surface of a turbine blade – velocity diagrams for turbine blades – work done on tangential flow runner – jet propulsion – propulsion of ships – forces caused by flow round a pipe – bend – angular momentum equation – radial flow over turbine blade – work done by radial runner.

Different classification of turbines – Pelton turbine: main components and their functions – design of component parts of Pelton turbine – force, power and efficiency – Francis turbine: different types – main components – design of components – torque, power and efficiencies – Kaplan turbine: components – force, torque, power and efficiencies – governing of water turbines – selections of turbines.

Unit-V

Pumps – classification of pumps – working principle of single acting and double acting pumps – slip and coefficient of discharge – rate of delivery – velocity and acceleration of water – speed indicator diagrams – effect of bent delivery pipe on separation – air vessels – suction in pumps with air vessels – pressure in cylinder on delivery stroke with air vessels – maximum speed of pump with air vessel – power required to drive the pump fitted with air vessels. Comparison with reciprocating pumps – principle and operation – different classifications of centrifugal pumps – specific speed – layout, accessories and starting of centrifugal pumps – static head, manometric head and gross head – power – overall efficiency – loss of head in pipes and fittings – fundamental equations of centrifugal pumps – work done and manometric efficiency – minimum starting speed – priming of pumps – cavitation in pumps – NPSH – multi – stage pumps – deep well pumps.

TEXT BOOKS

- 1. Jagdish Lal, Hydraulic machines, Metropolital Book Co. Pvt. Ltd. Reprint 2011.
- 2. Subramanya. K., Flow in open channels, Tata McGraw Hill, New Delhi 2000.

REFERENCES

- 1. Ven Te Chow, Open Channel Hydraulics, McGraw Hill, New York, 2009.
- 2. Mays. L.W., Water Resources Engineering, John Wiley and Sons (WSE), New York, 2005.
- 3. Jain. A.K., Fluid Mechanics, Khanna Publishers, New Delhi. 2010.
- 4. Srivastava. R., Flow through open channels, Oxford University Press, New Delhi, 2008.
- 5. Modi. P.N. and Seth. S.M., Hydraulics and Fluid Mechanics, Standard Book House, New Delhi, 2002.

COURSE OUTCOMES

- Relate the theory and practice of problems in hydraulic engineering.
- Apply knowledge of fluid mechanics in addressing open channel flow problems.
- Solve problems in uniform, gradually varied and rapidly varied flows in steady state conditions.
- Understand the working principle of pumps.
- Understand the working principle of turbines.

					Марр	ing of	COs w	ith PC)s						
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	2			3	1		2		2	2	3	1	3
CO2	3	1	3		2	2			1		1	2	3	1	3
CO3		2	3			1			2		2		3	1	3
CO4	2	2		1		3					1	1	2	1	3
CO5	2		1		2	2			2				2	2	3

	GEOTECHNICAL & FOUNDATION	L	Т	P	С
21 CEPC405	ENGINEERING	3	0	0	3

- To understand the nature, properties and behavioral response of soils is essential for a safe and stable design of foundations.
- To understand the behavior of soils as a supporting medium for structures.
- To develop knowledge required for successful structural engineering practice

UNIT I

Introduction—Types of soils, Soil as three-phase system in terms of weight, volume, voids ratio, and porosity. Definitions: moisture content, unit weight, degree of saturation, voids ratio, porosity, specific gravity. Relationship between volume weight, voids ratio-moisture content, unit weight-percent air voids, Determination of moisture content by oven dry method, pycnometer, Specific gravity by density bottle method, pycnometer method, unit weight by core-cutter method, sand-replacement method.

UNIT II

Plasticity Characteristics of Soil - Determination and use of consistency limits- plasticity, liquidity and consistency indices, flow & toughness indices, definitions of activity and sensitivity. Classification of Soils- particle size classification, textural classification, unified soil classification system, Indian standard soil classification system.

UNIT III

Shear Strength: Definition, Shear strength parameters and theory, shear strength of cohesive and non-cohesive soil. Different shear tests- Direct shear test, Tri-axial shear test, Un confined compression test, Vane shear test. Merits and demerits of Tri-axial shear test. Problems on shear tests.

UNIT IV

Permeability of Soil -Darcy's law, validity of Darcy's law. Determination of coefficient of permeability: Laboratory method: constant-head method, falling-head method. Field method: pumping-in test, pumping-out test. permeability of stratified soils, factors affecting permeability of soil. Seepage Analysis-Introduction, stream and potential functions, characteristics of flow nets, graphical method to plot flow nets. Problems on permeability tests.

UNIT V

Necessity for shallow foundations –Bearing capacity of shallow foundation, Terzaghi's formula and IS code formula –Factors affecting bearing capacity. Allowable bearing pressure – Safe bearing capacity. Problems. Types of piles and their function – Factors influencing the selection of pile, Effective length – Point of inflection -Load carrying capacity of single pile in cohesion less and cohesive soils as per relevant IS standards–static formula – Dynamic formulae (Engineering news and Hiley's), Problems. Negative skin friction – Uplift capacity – Settlement of Foundations – Ground Improvement techniques – Geotechnical applications for Roads.

TEXT BOOKS

- 1. Dr. Punmia.B.C, "Soil Mechanics & Foundation Engineering", Lakshmi Publications, 2005.
- 2. Moorthy, V.N.S., "Soil Mechanics & Foundation Engineering", CRS Press, 2002.

REFERENCES

- 1. Arora, "Soil Mechanics & Foundation Engineering", Standard Publishers Distributors, 2005.
- 2. SP 36 1 (1987): "Compendium of Indian Standards on Soil Engineering: Part-1 Laboratory Testing of Soils for Civil", Bureau of Indian Standards, New Delhi.
- 3. Shamsher Prakash, "Problems in Soil Mechanics", Asia Publishing House, 1972.
- 4. Terzaghi, K. and Peck.R.B, "Soil Mechanics in Engineering Practice", John Wiley & Sons, 1996.
- 5. Venkataramaiah. C, "Geotechnical Engineering", New Age International Publishers, 2006.

COURSE OUTCOMES

On completion of this module, the student must be able to:

- 1. Understand the different types of soil based on their formation mechanism and relationships of the soil
- 2. Understand the behaviour of soils based on their moisture contents and classify any soils based on their particle size distribution and index properties;
- 3. Understand the physical significance of effective stress and its relation with pore pressure.
- 4. Effect of capillary action and seepage flow direction on the effective stress at a point in the soil mass.
- 5. Understand the soil characters such as shear strength and stress distribution.
- 6. IS 2911 & IS 4651

						Ma	pping	of CO	s with	Pos					
COs	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	2	-	-	3	-	-	-	-	-	-	3	1	3
CO2	-	-	2	2	-	3	-	3	-	-	-	-	3	1	3
CO3	2	3	3	-	-	-	-	-	-	-	-	-	3	1	3
CO4	-	-	2	-	-	3	3	-	-	3	-	-	3	1	3
CO5	2	-	-	3	-	-	-	-	3	-	-	-	3	1	3

21CEPC406	STRENOTH OF MATERIALS	L	T	P	С
21CEPC406	STRENGTH OF MATERIALS	3	0	0	3

COURSE OBJECTIVES

- To know the method of finding slope and deflection of beams and trusses using energy theorems and to know the concept of analysing indeterminate beam.
- To estimate the load carrying capacity of columns, stresses due to unsymmetrical bending and various theories for failure of material.
- To analyse the members subjected to axial, bending, and torsional loads.

Unit-I: Energy Principles

Strain energy and strain energy density – strain energy due to axial load (gradual, sudden and impact loadings), shear, flexure and torsion – Castigliano's theorems – Maxwell's reciprocal theorem – Principle of virtual work – UNIT load method – Application of energy theorems for computing deflections in determinate beams, plane frames and plane trusses – lack of fit and temperature effects – Williot Mohr's Diagram.

Unit-II: Indeterminate Beams

Concept of Analysis – Propped cantilever and fixed beams – fixed end moments and reactions – sinking and rotation of supports – Theorem of three moments – analysis of continuous beams – shear force and bending moment diagrams.

Unit-III: Columns and Cylinders

Euler's column theory – critical load for prismatic columns with different end conditions – Effective length – limitations – Rankine – Gordon formula – Eccentrically loaded columns – middle third rule – core of a section – Thin cylindrical and spherical shells – stresses and change in dimensions – Thick cylinders – Compound cylinders – shrinking on stresses.

Unit-IV: State of Stress in Three Dimensions

Stress tensor at a point – Stress invariants – Determination of principal stresses and principal planes – Volumetric strain. Theories of failure: Maximum Principal stress theory – Maximum Principal strain theory – Maximum shear stress theory – Total Strain energy theory – Maximum distortion energy theory – Application problems.

Unit-V 1 Advanced Topics

Unsymmetrical bending of beams of symmetrical and unsymmetrical sections – Shear Centre – curved beams – Winkler Bach formula – stresses in hooks.

TEXTBOOKS

- 1. Punmia B.C., Ashok Kumar Jain and Arun Kumar Jain, "Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2017.
- 2. Rattan.S.S., "Strength of Materials", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2011.

REFERENCES

- 1. Kazimi S.M.A., Solid Mechanics, Tata McGraw Hill Publishing Co., New Delhi, 2003
- 2. William A. Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, Tata McGraw Hill Publishing company, 2007.
- 3. Singh. D.K., Strength of Materials, Ane Books Pvt. Ltd., New Delhi, 2016.
- 4. Egor P Popov, Engineering Mechanics of Solids, 2nd edition, PHI Learning Pvt. Ltd., New Delhi, 2012.
- 5. Rajput R.K., Strength of Materials (Mechanics of Solids, S.Chand & company Ltd., New Delhi, 2015.
- 6. Basavarajiah and Mahadevapa, Strength of Materials, University press, Hyderabad, 2016.

COURSE OUTCOMES

Students will be able to

- Determine the strain energy and compute the deflection of determinate beams, frames and trusses using energy principles.
- Analyze propped cantilever, fixed beams and continuous beams using theorem of three moment equation for external loadings and support settlements.
- find the load carrying capacity of columns and stresses induced in columns and cylinders
- Determine principal stresses and planes for an element in three dimensional state of stress and study various theories of failure
- Determine the stresses due to Unsymmetrical bending of beams, locate the shear center, and find the stresses in curved beams

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2						1	1		2	3	2	3
CO2	3	3	2			1			1	1			3	2	3
CO3	3	3	2			1			1	1		2	3	2	3
CO4	3	3							1	1		2	3	2	3
CO5	3	3	2						1	1		2	3	3	3

01 PTLIC 4 0 7	UNIVERSAL HUMAN MALUES	L	T	P	С
21 ETHS407	UNIVERSAL HUMAN VALUES	2	1	0	3

- Development of a holistic perspective based on self-exploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence.
- Strengthening of self-reflection.
- Development of commitment and courage to act.

UNIT-I COURSE INTRODUCTION - NEED, BASIC GUIDELINES, CONTENT AND PROCESS FOR VALUE EDUCATION

- 1.1 Purpose and motivation for the course, recapitulation from Universal Human Values-I.
- 1.2 Self Exploration what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration.
 - 1.3 Continuous Happiness and Prosperity- A look at basic Human Aspirations.
 - 1.4 Right understanding, Relationship and Physical Facility- the basic requirements for fulfillment of aspirations of every human being with their correct priority.
 - 1.5 Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario.
 - 1.6 Method to fulfill the above human aspirations: understanding and living in harmony at various levels.

Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking

UNIT-II UNDERSTANDING HARMONY IN THE HUMAN BEING - HARMONY IN MYSELF!

- 2.1 Understanding human being as a co-existence of the sentient T and the material 'Body'.
- 2.2 Understanding the needs of Self (T) and Body' happiness and physical facility.
- 2.3 Understanding the Body as an instrument of T' (I being the doer, seer and enjoyer).
- 2.4 Understanding the characteristics and activities of T' and harmony in T'.
- 2.5 Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail.
- 2.6 Programs to ensure Sanyam and Health.

Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life. Differentiate between prosperity and accumulation. Discuss program for ensuring health vs. dealing with disease

UNIT-III UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY- HARMONY IN HUMAN-HUMAN RELATIONSHIP

- 3.1 Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfillment to ensure mutual happiness; Trust and Respect as the foundational values of relationship.
- 3.2 Understanding the meaning of Trust; Difference between intention and competence.
- 3.3 Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship.
- 3.4 Understanding the harmony in the society (society being an extension of family): Resolution,

Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals.

3.5 Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.

Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives

UNIT-IV UNDERSTANDING HARMONY IN THE NATURE AND EXISTENCE - WHOLE EXISTENCE AS COEXISTENCE

- 4.1 Understanding the harmony in the Nature.
- 4.2 Interconnectedness and mutual fulfillment among the four orders of nature- recyclability and self-regulation in nature.
- 4.3 Understanding Existence as Co-existence of mutually interacting units in all-pervasive space.
- 4.4 Holistic perception of harmony at all levels of existence.

Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

UNIT-V IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL ETHICS

- 5.1 Natural acceptance of human values.
- 5.2 Definitiveness of Ethical Human Conduct.
- 5.3 Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order.
- 5.4 Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people- friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- 5.5 Case studies of typical holistic technologies, management models and production systems.
- 5.6 Strategy for transition from the present state to Universal Human Order: a. At the level of individual: as socially and ecologically responsible engineers, technologists and managers b. At the level of society: as mutually enriching institutions and organizations.
- 5.7 Sum up.

Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions eg. to discuss the conduct as an engineer or scientist etc.

TEXT BOOK

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCE BOOKS

- 1 Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
- 2 Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3 The Story of Stuff (Book).
- 4 The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5 Small is Beautiful E. F Schumacher.
- 6 Slow is Beautiful Cecile Andrews
- 7 Economy of Permanence J CKumarappa
- 8 Bharat Mein Angreji Raj PanditSunderlal
- 9 Rediscovering India by Dharampal
- 10 Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11 India Wins Freedom Maulana Abdul Kalam Azad
- 12 Vivekananda Romain Rolland (English)
- 13 Gandhi Romain Rolland (English)

COURSE OUTCOMES:

By the end of the course,

Students are expected to become more aware of themselves, and their surroundings (family, society, nature);

- 1. They would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.
- 2. They would have better critical ability.
- 3. They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society).
- 4. They would be able to apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.
- 5. This is only an introductory foundational input. It would be desirable to follow it up by
- a) faculty-student or mentor-mentee programs throughout their time with the institution
- b) Higher level courses on human values in every aspect of living. E.g. as a professional

	Mapping of Course Outcomes with Programme Outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1													PSO2	PSO3
CO1															1
CO2	2 02 - 3 3													1	1
CO3	-	-	-	2	-	-	-	-	-	-	-	-	1	1	2
CO4	-	-	-	-	-	3	-	-	2		-	-	1	1	2
CO5	-	-	-	-	-	-	-	-	2	2	-	2	2	1	3

010F0D409	CUDVEVINO I ADODATODY I	L	T	P	С
21CECP408	SURVEYING LABORATORY – I	0	0	3	1.5

COURSE OBJECTIVES

- To conduct experiments on Surveying and Levelling.
- Understand the principles of surveying.
- Know about compass surveying and plane table surveying.
- Understand the concepts of leveling and its applications.

LIST OF EXPERIMENTS

I Chain Surveying

Study of Chains and its accessories

Ranging a line and taking offsets

Cross – Staff Survey (Area of a traversing by Chain triangulation)

II Compass Surveying

Study of prismatic compass and its accessories

Determination of area of an extent by radiation methods

Open Traversing and Closed Traversing

Determination of distance of two inaccessible points

Plane Table Surveying

Study of Plane Table Accessories

Determination of Area of an extent by radiation method

Determination of distances using Intersection method

Determination of a point using resection – Three point problem

IV Levelling

Study of Dumpy level and Telescopic Levelling staff

Simple Leveling – Determination of Reduced levels using Height of Collimation Method
Simple Leveling – Determination of Reduced levels using Rise & Fall Method
Differential Leveling – Determination of Reduced levels using Height of Collimation Method
Differential Leveling – Determination of Reduced levels using Rise & Fall Method

TEXT BOOKS

- 1. Agor R., A text book on Advanced Surveying, Khanna Publishers, 4th Edition, New Delhi, 2007.
- 2. Arora K.R., A text book on Surveying Volume I and III, Standard Publishers New Delhi, 2006.

REFERENCES

- 1. Punmia, B.C., Ashok K. Jain and Arun K. Jain (2005). Surveying Volume I & III Laxmi Publications, 2002.
- 2. Kanetkar, T.P. and Kulkarni, S.V., Surveying and Levelling, Pune Vidyarthi Griha Prakashan, 1988.
- 3. Heribert Kahmen and Wolfgang Faig, Surveying, Walter de Gruyter, 1995.
- 4. Clark D., Plane and Geodetic Surveying, Vols. I and II, C.B.S. Publishers and Distributors, Delhi, Sixth Edition

COURSE OUTCOMES

- Possess knowledge on traversing using conventional surveying instruments.
- Determine the area of the traverse.
- Find out the inaccessible distance between the points.
- Determine the difference in elevation and setting the MSL in the various locations.
- Gain overall knowledge about Survey Instruments, their care and adjustments.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3					3				2	2	2	3
CO2			2					2	3	2	2		3	2	3
CO3	2		3						2	2	3		3	2	3
CO4			2			3			1		2		3	2	3
CO5	2					3			2		2	2	3	3	3

21CECP409	HYDRAULIC ENGINEERING LABORATORY	L	T	P	С
21CECP409	HIDRAULIC ENGINEERING LABORATORY	0	0	3	1.5

Students will be able to

- Verify the principles studied in theory by performing the experiments
- Determine the rate of flow in various sections
- Determine the Various losses in pipes
- Determine the charsterstics of rotodynamic and positive displacement pumps

LIST OF EXPERIMENTS

A. Flow Measurement

Calibration of Rotameter

Calibration of Venturimeter / Orificemeter

Bernoulli's Experiment

B. Losses in Pipes

Determination of friction factor in pipes

Determination of min or losses

C. PUMP

Characteristics of Centrifugal pumps

Characteristics of Gear pump

Characteristics of Submersible pump

Characteristics of Reciprocating pump

D. Turbines

Characteristics of Pelton wheel turbine

Characteristics of Francis turbine/Kaplan turbine

E. Determination of Metacentric height

Determination of Metacentric height of floating bodies

REFERENCES

- 1. Sarbjit Singh."Experiments in Fluid Mechanics", Prentice Hall of India Pvt. Ltd, Learning Private Limited, Delhi, 2009.
- 2. "Hydraulic Laboratory Manual", Centre for Water Resources, Anna University, 2004.
- 3. Modi P.N. and Seth S.M., "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi, 2000.
- 4. Subramanya K. "Flow in open channels", Tata McGraw Hill Publishing. Company, 2001.

COURSE OUTCOMES

The students will be able to

- Measure the flow in various sections.
- Calculate the losses in pipes.
- Develop the characteristics curves, thus specific speed can be arrived for the rotodynamic and positive displacement pumps .
- Determine the performance charsterstics of turbines
- Develop the ship model by finding the metacentre.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2		2					2				3	1	3
CO2	2	2		2					2				3	1	3
CO3	2	2		2					2				3	1	3
CO4	2	2		2					2				3	1	3
CO5	2	2		2					2				3	1	3

ECP410 STRENGTH OF MATERIALS LABORATORY	L	T	P	С
---	---	---	---	---

	_	_	_	
	0			15
	_	_	_	1.0

- To provide practical training on testing of conventional engineering materials like steel and wood.
- To understand the stress deformation response under axial and transverse loading conditions in the above tests.

LIST OF EXPERIMENTS

- 1. Tension test on Steel rods
- 2. Double Shear test on Steel rods
- 3. Deflection test on Steel and Wooden beams
- 4. Compression test on wooden specimens
- 5. Impact test
- 6. Hardness tests on different metals
- 7. Test on helical springs
- 8. Torsion test

REFERENCES

- 1. Rajput. R.K., Strength of Materials, S.Chand & Co., September 2000.
- 2. Dr. Punmia. B.C, et al., Strength of Materials and Theory of Structures Vol.1||, Laxmi Publications, 2000
- 3. Sadhu Singh, Strength of Materials, Khanna Publishers, New Delhi, 1988.
- 4. Ramamrutham. S., Strength of Materials, Dhanpat Rai sons, New Delhi, 1992.
- 5. Hiraskar. G.K., Strength of Materials, Khanna Publishers, New Delhi, 1984.

COURSE OUTCOMES

- Understand the different material properties.
- Gain knowledge between the stress and strain,
- Develop the Young's modulus and Poisson's ratio
- Understand the different loading conditions such as traverse and axial
- Determine the hardness of different metals

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3			2		2					3	2	3
CO2		2		2	2			3			2	3	3	2	3
CO3	3			2					3				3	1	3
CO4				3		3					3		3	2	3
CO5	2		2						2				3	1	3

FIFTH SEMESTER

01CFBCE01	WATER 2- WASTEWATER ENGINEERING	L	T	P	С
21CEPC501	WATER & WASTEWATER ENGINEERING	3	0	0	3

COURSE OBJECTIVES

- To make the students conversant with basic principles of water and wastewater engineering.
- To learn about collection, conveyance, characterization, treatment and disposal of water and wastewater.
- To apply knowledge of mathematics, physics, chemistry, and microbiology to solve and analyze engineering problems related to water and wastewater collection, transport, quality and treatment.

Unit-I

Objectives of public water supply schemes; Health acceptability, adequacy, convenience and economy. Per Capita Demand – Population forecasting – Variation in demand pattern Surface and Sub – Surface water sources – Typical Characteristics – Impounded storage reservoirs – Mass curve analysis – Infiltration. Pipes, Wells and Galleries – Tube wells – Construction – Sea & Back water sources – Intake Structures.

Unit-II:

Pipe and Channels for transmitting water – Hydraulics of pipe flow – Use of charts and Nomo grams for flow computations – Materials for pipes and conduits; Alloys of Steel, Cement Composites and Plastic pipes – Pipe loses – Laying, Jointing and Testing – Appurtenances of pipes – Pumps and Pumping stations – Selection of pumps.

Unit-III:

Unit-processes of water treatment - Screening - Coagulation & Flocculation - Clarifier - Clariflocculator - Media Filters: Gravity & Pressure - Filter Medias: Sand, Activated Carbon, Mixing basins - Principles of disinfection - Methods of Disinfection; Chlorination, UV Radiation, Ozonation, etc,. - Water softening: Cationic, Anionic and Mixed Beds - Iron and Manganese removal - Operation and maintenance aspects.

Unit-IV:

Sewage, Sewer and Sewerage – Collections & Conveyance of sewage – Classification of sewerage system – Quantity of sewage – Fluctuation of sewage flow – Hydraulics of sewers – Self cleaning velocity – Shapes of sewers – Hydraulic design of sewers – Hydraulic design of storm water drains.

Unit-V

Primary & Secondary Treatment processes in wastewater treatment – Aerobic, Anaerobic and combinations of processes – Screens, Grit chamber, Settling tanks, Septic tanks and disposal arrangements. Aerobic and anaerobic processes – Methods of aeration – Activated sludge process – Trickling filter – advanced processes – anaerobic digester – UASBR – Dewatering of sludge – disposal of sludge.

TEXT BOOKS

- 1. Garg S.K., Water Supply Engineering, Khanna Publishers, Delhi, 2005.
- 2. Duggal K.N., Elements of Environmental Engineering, S.Chand & Company, New Delhi, 2004.

REFERENCE BOOKS

- 1. Arcadio P. Sincerosr, Gregoria A. Sincero, Environmental Engineering a Design Approach, Prentic Hall, New Delhi, 2002.
- 2. Glynn Henry J. & Gary W. Heinke, Environmental Science and Engineering, Prentice Hall of India, New Delhi, 2004.
- 3. Garg.S.K, Waste Disposal Engineering, Khanna Publishers, New Delhi, 2005.
- 4. Manser A.G.R. and Keeling A.A, Practical Handbook of Processing and Recycling of Municipal solid Wastes, Lewis Publishers, CRC Press, Taylor & Francis Books India Pvt. Ltd., New Delhi, 1996.
- 5. Punmia.B.C, Environmental Engineering II, Laxmi Publications (P) LTD, 2005.
- 6. Garg.S.K, Sanitary Engineering, Khanna Publishers, New Delhi, 2005.
- 7. George Tchobanoglous and Frank Kreith, Handbook of Solid waste Management, McGraw Hill, New York, 2002.

COURSE OUTCOMES

At the end of the course students will be able to

- Apply the main procedures and methods of treatment for water and wastewater.
- To understand the supply and distribution systems.
- Explain different methodologies for collection and conveyance of water and wastewater.
- Examine the physical, chemical and biological characteristics of water and wastewater.
- Suggest suitable methods for treatment and disposal.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	2					3					2	2	2
CO2		2				2							3	2	2
CO3				2		3							3	2	2
CO4	3		2										3	3	3
CO5	3		2			2	3		2				3	3	3

21CEPC 502	ADVANCED SURVEYING	L	Т	Р
210210 302	ADVANCED SURVETING	4	0	0

COURSE OBJECTIVES:

- •To understand the geodetic measurements and control survey methodology and its adjustments.
- •To understand the use Astronomy, modern surveying such as Total Station and GPS
- •To introduce the concepts of various Engineering Project Survey.

Unit I - Triangulation Survey

Horizontal and vertical control – triangulation – principle – purpose – classification – field work – triangulation station marking – signals – intervisibility of stations – numeric problems – baseline measurements – methods.

Errors in surveying – types – accidental errors – laws of weights –standard error – methods – methods of correlates – normal equation method – least squares.

Unit II – Aerial Survey

Terrestrial Photogrammetry – Terrestrial stereo photogrammetry – Aerial photogrammetry – overlaps – scale of photographs – Vertical and titled photographs distortion in aerial photographs – stereoscopic vision - photo interpretation – Applications.

Unit III - Total Station Survey

Classification – basic measuring and working principles of an Electro – optical and Microwave total station- sources of errors in Electro – optical and Microwave total station – Care and Maintenance of total station – trilateration – Applications.

Unit IV - GPS Survey

Basic concepts – Space, Control and User segments – Satellite configuration – Signal structure – Orbit determination and representation – Ant spoofing and selective availability – hand held and geodetic receivers – Field work procedure – Data processing Applications.

Unit V - Miscellaneous

Reconnaissance – Rout surveys for highways, railways and waterways –setting out methods - hydrographic surveying – tides – MSL – Sounding methods – measurement of current and discharge – Tunnel alignment and setting out – Settlement and Deformation studies.

Engineering project surveys- requirements and specifications, various stages of survey work Setting out works- simple circular curves and Building Marking using Total stations – Area Computation Using GPS.

TEXT BOOKS:

- 1. James M.Anderson and Edward M.Mikhail, "Surveying, Theory and Practice", 7th Edition, McGraw Hill, 2001.
- 2. Bannister and S.Raymond, "Surveying", 7th Edition, Longman 2004.
- 3. Alfred Leick, GPS satellite surveying, John Wiley & Sons Inc., 3rd Edition, 2004.
- 4. Laurila, S.H. Electronic Surveying in Practice, John Wiley and Sons Inc, 1993.

REFERENCES:

- 1. Roy S.K., "Fundamentals of Surveying", 2nd Edition, Prentice Hall of India, 2004.
- 2. Arora K.R. "Surveying Vol I & II", Standard Book House, 10th Edition 2008.
- 3. Guocheng Xu, GPS Theory, Algorithms and Applications, Springer Verlag, Berlin, 2003.
- 4. Seeber G, Satellite Geodesy, Water De Gruyter, Berlin, 1998.

	MAPPING PROGRAMME OUTCOMES WITH COURSE OUTCOMES																
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PSO1	PSO2	PSO3
CO1	3	2				3			2		2				3	2	3
CO2	2			2	2	3					2				3	2	3
CO3					2				2		2				3	2	3
CO4		2		2	3				3	2	3				3	2	3
CO5	3	2		3	2				2		3				3	3	3

Course Outcomes:

On completion of this course, the student shall be able to

- 1. Understand the concept of geodetic Survey and its corrections
- 2. do the photogrammetric surveying and interpretation
- 3. solve the field problems with Total station
- 4. know the GPS surveying and the data processing
- 5. understand the route surveys and tunnel alignments

01CEDCE02	CTDIICTIDAI ANALVOIC	L	T	P	C
21 CEPC503	STRUCTURAL ANALYSIS	3	0	0	3

- To understand the background on principles of structural Analysis
- Students will be exposed to the theories and concepts of both concrete and steel design and analysis both at the element and system levels
- Hands on design experience and skills will be gained and learned through problem sets

Unit-I

Analysis for moving loads – Influence Line Diagram (ILD) – Muller Breslau Principle for Influence Lines – ILD for simply supported beams – ILD for simple supported beams – ILD for single over hang beams – ILD for Propped cantilever beams with flexural hinges – simply simple beams with floor girders – Problems with single concentrated loads, two loads , train of loads, UDL longer than span and shorter than span – Maximum SFD and BMDs – ILD for Simple Plane truss problems. ILD for continuous beams and rigid frames (no problems) – Indirect model analysis for indeterminate structures.

Unit-II

Arch action – Types of Arches – Analysis of Three – hinged and Two – hinged arches with effect of temperature change, rib shortening yielding of supports – Influence lines – Parabolic and Circular arches – Settlement effects.

Unit-III

Cables and Suspension bridges – Cable Theorem – Cable under uniformly distributed loads (Cable Equation) – Horizontal thrust on the cable – Tension in the cable – Length of the cable – Effect of temperature on the cable – Stiffening girders in suspension bridges – Analysis of three – hinged and two – hinged stiffening girders with sample support level and different support levels. ILD for moving loads over suspension bridges. Analysis Beams Curved in Plan – Analysis of Space trusses using tension coefficient method.

Unit-IV

Stiffness or Displacement equation – Member stiffness – Stiffness coefficients – Element and Global stiffness matrices – Transformations of stiffness matrices, load vectors and displacements vectors – Choice of displacements restricted to two – Analysis of continuous beams, frames, Analysis of simple plane truss, Problems with temperature changes, pre – strains and support settlements.

Unit-V

Approximate methods: substitute frame method for gravity loads, Portal and cantilever methods for lateral loads. Simple frames used for water tanks, industrial bends, bunkers and silos stagging.

Plastic Bending Beams – Assumptions – Plastic moment of resistance – Plastic Modulus Shape and Load factors – Plastic hinge and mechanism – Plastic analysis of indeterminate beams and frames – Upper and lower bound theorems.

TEXT BOOKS

- 1. Punmia.B.C, et al, Theory of Structures Vol.I & II, Lakshmi Publications, New Delhi, 2004.
- 2. Ramamrutham.S & Narayan.R, (1993) Theory of Structures, Dhanpat Rai and Sons, 1992.

REFERENCES

- 1. Bhavikatti.S.S, Structural Analysis, Vol. I and II, Vikas Publishing House Pvt.Ltd., New Delhi, 2008.
- 2. Reddy.C.S, Basic Structural Analysis, Tata McGraw Hill Book Co., New Delhi, 1996.
- 3. Wang.C.K, Intermediate Structural Analysis, Tata McGraw Hill Book Co., New Delhi, 1984.
- 4. Vazirani and Ratwani, Analysis of Structures Vol.I.& II, Khanna Publishers, New Delhi, 1996.
- 5. Devdas Menon, -Structural Analysis, Narosa Publishing House, New Delhi, 2009.
- 6. Viadyanathan. R and Perumal. P, Comprehensive Structural Analysis Vol. I & II, Laxmi Publications, New Delhi, 2003.
- 7. Negi.L.Sand Jangid.R.S, Structural Analysis, Tata McGraw Hill Book Co., New Delhi, 2003.
- 8. Gambhir, M.L., Fundamentals of Structural Mechanics and Analysis, PHI Learning Pvt. Ltd., New Delhi, 2011.

COURSE OUTCOMES

At the end Students will be able to

- Analyze the indeterminate structures like beams and frames with different end conditions.
- Explain the concepts of influence lines and its effects.
- Analyse the arch structures and suspension cable bridges.
- Solve the structural problems with different methods of analysis.
- Solve the problems on trusses and elements.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3			2	2						3	2	3
CO2	3	3	3			2	2						3	2	3
CO3	3	3	3			2	2						3	2	3
CO4	3	3	3			2	2						3	3	3
CO5	3	3	3			2	2						3	3	3

21 CEPC504	STRUCTURAL CONCRETE DESIGN	L	T	P	C
21CEPC504	STRUCTURAL CONCRETE DESIGN	3	0	0	3

- To introduce the different types of philosophies related to design of basic structural elements such as slabs, beams and columns with reference to Indian standard code of practice.
- To learn to design footings.

Unit-I

Objectives of structural design – Structural systems – Structural analysis and Design – Use of Design codes and Hand books – Stress – strain curves of concrete and steel as per IS:456 – 2000 and ACI 318 – 14 – Modulus of Elasticity of concrete and steel – Design Philosophies – Working stress method – assumptions – Concept of transformed sections – modular ratio – permissible stresses – Stress block characteristics – Ultimate Load method – assumptions – Stress block characteristics – Limit State method – assumptions – Partial Safety factors for loads – Ultimate limit state – Serviceability limit state – Stress block characteristics – Moment of resistance expressions for balanced, under and over reinforced rectangular sections for rectangular beams using working stress method – Simple problems.

Unit-II

Flexure alone: Analysis and Design of Singly Reinforced rectangular beams – Flanged beams (T & L beams) – Doubly Reinforced rectangular beams – Limit state method – Roof beams, Cantilever beams – Lintel beams – Plinth beams – Reinforcement detailing as per SP 34: 1987 and IS 13920: 1993.

Unit-III

Shear – Shear stresses distribution in rectangular beams – Shear stress distribution in flanged beams – Shear stresses distribution in rectangular beams due to torsion – Design shear strength of concrete – Flexural shear code recommendations for rectangular and flanged sections – Problems. Bond – Factors affecting bond resistance as per IS 456:2000 – Check for development length – Check for crack width – Deflection computations – short term and long term. Design of one and two way concrete slabs – Circular slabs – Cantilever slabs – Dog legged staircase as per IS 456:2000 standards – Reinforcement detailing as per SP 34: 1987 and IS 13920: 1993.

Unit-IV

Design of Short and Slender Columns as per IS 456:2000 standards – Design of Columns subjected to axial compression and uni – axial bending – Columns subjected to axial compression and biaxial bending – Axial load verses moment Interaction charts – Reinforcement detailing as per SP 34: 1987 and IS 13920: 1993.

Unit-V

Design of Isolated rectangular footings with concentric column loads – Design of Isolated rectangular footings with eccentric column loads – Design of circular footings with concentric column loads – Design of combined footings – Reinforcement detailing as per SP 34: 1987 and IS 13920: 1993.

TEXT BOOKS

- 1. Unnikrishna Pillai S. and Devdas Menon, Reinforced Concrete Design, Tata McGraw Hill Publications, 1988.
- 2. Krishnaraju N., Advanced R.C.Design, Tata McGraw Hill Publications, 1995.

REFERENCES

- 1. Shah. V.L. and Karve, Illustrated R.C. Design, Structures Publications, 2010.
- 2. Ramamrutham S. and Narayan. R., Design of R.C. Structures, Dhanpat Rai & Sons, 1993.
- 3. Mallick. S.K. and Gupta A.P., Reinforced Concrete, Oxford I B H, 1987.
- 4. Punmia.B.C., et al., R.C.Structures Vol.I & II, Laxmi Publications, 1992.

STANDARDS

- 1. IS 456: 2000, Code of Practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi.
- 2. IS 13920: 1993, Code of Practice for Ductile Detailing of Reinforced Concrete Structures subjected to Seismic forces, Bureau of Indian Standards, New Delhi.
- 3. SP 34: 1987, Handbook on Concrete Reinforcement and Detailing, Bureau of Indian Standards, New Delhi.

COURSE OUTCOMES

- Understand the behaviour of Reinforced Concrete and its design philosophies.
- Gain knowledge about the rudimentary principles of designing reinforced concrete structural elements as per the existing codes.
- Learn the stress distribution and flextural shear for different elements
- Develop the knowledge on designing the columns
- Learn the desigining the footing for various structures

	Mapping of COs with POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	3										2		
CO2	3	1	1										2		
CO3	2	2	2										2		
CO4	2	2	3										2		
CO5	2	2	3										2		

01 CECDEO 7		L	T	P	С
21 CECP507	ENVIRONMENTAL ENGINEERING LABORATORY	0	0	3	1.5

- To quantify water and wastewater pollutants.
- To determine concentration of air pollutants.
- To analyze the characteristics of water, wastewater and ambient air.
- To study the growth of microorganisms and its quantification.

LIST OF EXPERIMENTS

- 1. Determination of **Chloride** content in water sample.
- 2. Determination of **Dissolved Oxygen** in water sample.
- 3. Determination of **pH** in water sample.
- 4. Determination of **Hardness** in water sample.
- 5. Determination of **Total Solids (TDS, TSS)** in water sample.
- 6. Determination of **Turbidity** of various water and wastewater samples using Nephelo Turbidity meter.
- 7. Determination of **Electrical Conductivity** of water samples.
- 8. Determination of **Sulphates** in water sample.
- 9. Determination of **Chemical Oxygen Demand** for water sample.
- 10. Determination of **Bio Chemical Oxygen Demand** for water sample.
- 11. Determination of **Residual Chlorine** in water sample.
- 12. Determination of **Chlorine Demand** for water sample.
- 13. Determination of optimum dosage of coagulant using Jar test apparatus.
- 14. Determination of infiltration capacity using Double ring infiltrometer.

REFERENCES

- 1. AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, APHA, 2005.
- 2. Sawyer, C.N., McCarty, P.L., and Parkin, G.F., Chemistry for Environmental Engineering, 4th Edition, Tata McGraw Hill Publishing Company Limited, 2000.
- 3. Environmental Engineering Laboratory Manual by B. Kotain & Dr. N. Kumarswamy NEERJ Laboratory Manual.
- 4. Droste, R.L. and Gehr, R.L., 2018. Theory and practice of water and wastewater treatment. John Wiley & Sons

COURSE OUTCOMES

At the end of the course students will be able to:

- 1. Quantify the pollutant concentration in water, wastewater and ambient air.
- 2. Recommend the degree of treatment required for water and wastewater.
- 3. Analyze the survival conditions for the microorganisms and their growth rate.
- 4. Recommend the quantity of chemicals required for water treatment
- 5. Give suggestion and remedy for water treatment

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2		3		2				1	3	2	1	2	3
CO2		3	2	1	2			2	3	1	2		1	2	1
CO3	1	2	2		1			1		1	3		2	1	1
CO4	2						3				3	2	1	2	2
CO5		3	2		1		3	1		2		2	1	2	2

21 CECP508	SURVEYING LABORATORY - II	L	T	P	С
21 CECP308	SURVEYING LABORATORY - II	0	0	3	1.5

COURSE OBJECTIVES

• To conduct experiments on Theodolite Surveying

- To determine the height of the object by Trigonometric leveling
- To find out the tacheometric constant
- To find out the horizontal distance and elevation by tacheometric surveying

LIST OF EXPERIMENTS

I Theodolite and Trigonometric Surveying

Study of Transit theodolite, fundamentals of various accesories

Measurement of horizontal angle by repetition method

Measurement of horizontal angle by reiteration method

Trigonometric levelling - Single plane method - Base accessible

Trigonometric levelling – Single plane method – Base inaccessible

Trigonometric levelling - Double plane method - Base inaccessible

II Tacheometric Surveying

Determination of tacheometric constants

Determination of Distance and elevation by stadia hair method

Determination of Distance and elevation by tangential method

Determination of Gradient of a line using stadia hair and tangential method

Determination of distances and heights using Subtense bar

Demonstration

Study of GPS

Study of Total Station

IV Survey Camp (One Week Mandatory)

Longitudinal Section and Cross Section of Canal / Bund

Block Contouring

Hill Contouring

Setting out work - Simple Curves

Building Marking

TEXT BOOKS

- 1. Agor, R., A text book on Advanced Surveying, Khanna Publishers, 4th Edition, New Delhi, 2007.
- 2. Arora, K.R., A text book on Surveying Volume I and II, Standard Publishers New Delhi, 2006.

REFERENCES

- 1. Punmia, B.C., Ashok K. Jain and Arun K. Jain, Surveying Volume I & II, Laxmi Publications, 2005.
- 2. Kanetkar, T.P. and Kulkarni, S.V., Surveying and Levelling, Pune Vidyarthi Griha Prakashan, 1988.
- 3. Heribert Kahmen and Wolfgang Faig, Surveying, Walter de Gruyter, 1995.
- 4. Clark D., Plane and Geodetic Surveying, Vols. I and II, C.B.S. Publishers and Distributors, Delhi, Sixth Edition

COURSE OUTCOMES

- Possess the knowledge to find the horizontal and vertical angle by theodolite surveying
- To find out the inaccessible distance by theodolite surveying
- To find out the difference in elevation by tacheometric surveying
- To find out the gradient between the points
- Possesses the knowledge of GPS and Total Station

						M	appin	g of CO	os witl	ı Pos					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3		3				2	3	3	2	3	3	2	3
CO2			2		3	3	2	3	2				3	2	3
CO3					3		3	2	3				3	2	3

CO4		3	2			3		3	2	3
CO5	3	3	2		3		2	3	2	3

21 CECP509	STRUCTURAL DESIGN & DETAILING LABORATORY - I	L	T	P	С
21CECP309	STRUCTURAL DESIGN & DETAILING LABORATORY - I	0	0	3	1.5

- Train students to use latest software available to solve structural engineering problems.
- Learn documentations procedures.

LIST OF EXPERIMENTS

Plate 1. Draw cross section, longitudinal sections of Concrete Beams with reinforcement details as per SP 34: 1987, IS 13920: 1993.

Singly and Doubly Reinforced Concrete Beams

Flanged beams: T and L shaped Reinforced Concrete Beams

Rectangular Continuous Beams

Lintel Beams with sunshade

Plinth Beams

One way and two way slabs.

Continuous slabs

Plate 2. Draw cross section, longitudinal sections of Concrete staircase with reinforcement details as per SP 34: 1987, IS 13920: 1993.

Dog legged staircase

Plate 3. Draw cross section, longitudinal sections of Column with Footings and reinforcement details as per SP 34: 1987, IS 13920: 1993.

Rectangular Column with Isolated Footings

Circular Column with Circular Isolated Footings

Plate 4 & 5. Draw cross section, longitudinal sections and reinforcement details for the followings

Strap footing

Raft foundation (IS: 2950 (Part I) – 1981).

Plate 6, 7 & 8. Draw cross section, longitudinal sections and reinforcement details as per IS:

2911 (Part 1/Sec 1) - 2010, IS 2911 (Part III): 1980 and SP 34: 1987.

Pile with Pile cap (Two pile group)

Pile with Pile cap (Three pile group)

Pile with Pile cap (Four pile group)

Plate 9 & 10. Draw cross section, longitudinal sections and reinforcement details as per SP 34: 1987.

Cantilever Type Retaining Wall

Counter fort Type Retaining Wall

Plate 11. Analysis of Symmetrical and Un – Symmetrical Building Frames(Gravity, Wind and Earthquake Loads) using STADD PRO and Etabs Softwares

TEXT BOOKS

- 1. Krishnaraju N, Structural Design and Drawing, Universities Press, 2009.
- 2. Punmia B.C, Ashok Kumar Jain and Arun Kumar Jain, Comprehensive Design of Steel Structures, Laxmi Publications Pvt. Ltd., 2003.

REFERENCES

- 1. Krishnamurthy D, Structural Design and Drawing Voll, IlandIII, CBS Publishers, 2010.
- 2. Shah V L and Veena Gore, Limit State Design of Steel Structures
- 3. IS800 2007, Structures Publications, 2009.
- 4. IS 456(2000) Indian Standard Plain and Reinforced Concrete Code of Practice, Bureau of Indian Standards, New Delhi.
- 5. SP34 Handbook on Concrete Reinforcement and Detailing, Bureau of Indian Standards, New Delhi.
- 6. IS 800 (2007) Indian Standard General Construction In Steel—Code of Practice, Bureau of Indian Standards, New Delhi.
- 7. IS 875 Part 1 (2003) Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures, Code of Practice Dead Load, Bureau of Indian Standards, New Delhi.
- 8. IS 875 Part 2 (2003) Code of Practice for Design Loads (Other Than Earthquake) for Buildings and Structures, Code of Practice Imposed Load, Bureau of Indian Standards, New Delhi.
- 9. IS 875 Part 3 (2003) Code of Practice for Design Loads (Other than Earthquake) for Buildings and Structures, Code of Practice Wind Load, Bureau of Indian Standards, New Delhi.
- 10. IS 3370 Part 1 (2009) Indian Standard Concrete Structures for Storage of Liquids Code of Practice General Requirements, Code of Practice, Bureau of Indian Standards, New Delhi.
- 11. IS 3370 Part 2 (2009) Indian Standard Concrete Structures for Storage of Liquids Code of Practice Reinforced Concrete Structures, Code of Practice, Bureau of Indian Standards, New Delhi.
- 12. IS 3370 Part 4 (2008) Indian Standard Code of Practice for Concrete Structures for The Storage of Liquids Design Tables, Code of Practice, Bureau of Indian Standards, New Delhi.
- 13. IS 804 (2008) Indian Standard Specification for Rectangular Pressed Steel Tanks, Code of Practice, Bureau of Indian Standards, New Delhi.
- 14. IS 805 (2006) Indian Standard Code of Practice for Use of Steel in Gravity Water Tanks, Code of Practice, Bureau of Indian Standards, New Delhi.
- 15. IRC 112 2011, Code of Practice for Concrete Road Bridges, The Indian Roads Congress, New Delhi.
- 16. IRC 6 2014, Standard Specifications and Code of Practice for Road Bridges Section: II Loads and Stresses, The Indian Roads Congress, New Delhi.

COURSE OUTCOMES

- 1. Design and draw reinforced concrete Cantilever and Counterfort Retaining Walls
- 2. Design and draw flat slab as per code provisions
- 3. Design and draw reinforced concrete and steel bridges
- 4. Design and draw reinforced concrete and steel water tanks
- 5. Design and detail the various steel trusses and cantry girders

						M	apping	g of CC	s with	POs					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2					3	2		3	3	3	2	3
CO2				3		3	2	3	3				3	2	3
CO3		3			2		3	3	2	3			3	2	3
CO4	2		3				2			3			3	2	3
CO5		3		2	3								3	2	3

SIXTH SEMESTER

21 CEPC601	HIGHWAY ENGINEERING	L	T	P	С
Z1CEPC601	HIGHWAI ENGINEERING	3	0	0	3

COURSE OBJECTIVES

- To enable students to differentiate between road pavement structures, to analyze road pavement structures, to differentiate between the different types of materials used and to design road pavements.
- Maintenance of highways as per IRC standards, specifications and methods.
- To give the students the satisfaction of producing for themselves a full road pavement design, they are taken through one of the available methods and they perform examples so they can see how the principles and their application come together in a design

Unit-I: Highway Planning and Alignment

Significance of highway planning – Modal limitations towards sustainability – History of road development in India – factors influencing highway alignment – Soil suitability analysis.

Road ecology – Engineering surveys for alignment, objectives, conventional and modern methods – Classification of highways – Locations and functions – Typical cross sections of Urban and Rural roads.

Unit-II: Geometric Design of Highways

Cross sectional elements – Sight distances – Horizontal curves, Super elevation, transition curves, widening at curves – Vertical curves – Gradients, Special consideration for hill roads – Hairpin bends – Lateral and vertical clearance at underpasses.

Unit-III: Design of Flexible and Rigid Pavements

Pavement components and their role – Design principles – Design practice for flexible and rigid Pavements (IRC methods only) – Embankments – Problems in Flexible pavement design.

Unit-IV: Highway Construction Materials and Practice

Highway construction materials, properties, testing methods – CBR Test for subgrade – tests on aggregate & bitumen – Test on Bituminous mixes – Construction practice including modern materials and methods, Bituminous and Concrete road construction, Polymer modified bitumen, Recycling, Different materials – Glass, Fiber, Plastic, Geo – Textiles, Geo – Membrane (problem not included) – Quality control measures – Highway drainage – – Construction machineries.

Unit-V: Evaluation and Maintenance of Pavements

Pavement distress in flexible and rigid pavements – Types of maintenance – Pavement Management Systems – Pavement evaluation, roughness, present serviceability index, skid resistance, structural evaluation, evaluation by deflection measurements – Strengthening of pavements – Highway Project formulation.

TEXT BOOKS

- 1. Khanna.S. K., Justo C.E.G. and Veeraragavan A. "Highway Engineering", New Chand Publishers, 2014.
- 2. Kadiyali L.R., "Principles and Practice of Highway Engineering", Khanna Technical Publications, 8th edition Delhi, 2013.

REFERENCES

- 1. Indian Road Congress (IRC), Guidelines for the Design of Flexible Pavements, Third Revision), IRC: 37 2012.
- 2. Indian Road Congress (IRC), Guidelines for the Design of Plain Jointed Rigid Pavements for Highways, (Third Revision), IRC: 58 2012.
- 3. Yang H. Huang, "Pavement Analysis and Design", Pearson Education Inc, Nineth Impression, South Asia, 2012.
- 4. Ian D. Walsh, "ICE manual of highway design and management", ICE Publishers, Ist Edition, USA, 2011.
- 5. Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, "Principles of Highway Engineering and Traffic Analysis", Wiley India Pvt. Ltd., New Delhi, 2011
- 6. Garber and Hoel, "Principles of Traffic and Highway Engineering", CENGAGE Learning, New Delhi, 2010.

- 7. O'Flaherty.C.A "Highways, Butterworth Heinemann, Oxford, 2006.
- 8. IRC 37 2012, The Indian roads Congress, Guidelines for the Design of Flexible Pavements, New Delhi.
- 9. IRC 58 2012. The Indian Road Congress, Guideline for the Design of Rigid Pavements for Highways, New Delhi.
- 10. Subramanian K.P., "Highways, Railways, Airport and Harbour Engineering", Scitech Publications (India), Chennai, 2010.

COURSE OUTCOMES

Students will be able to

- 1. Get knowledge on planning and aligning of highway.
- 2. Geometric design of highways
- 3. Design flexible and rigid pavements.
- 4. Gain knowledge on Highway construction materials, properties, testing methods
- 5. Understand the concept of pavement management system, evaluation of distress and maintenance of pavements

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1								3	2				3	3	3
CO2						3	2	3	3	3	3	2	3	3	3
CO3			3		3			2	3				3	3	3
CO4					3	2	3	2	3	2	3	2	3	3	3
CO5					3	2		3	2		2	3	3	3	3

21 CEPC602	STRUCTURAL STEEL DESIGN	L	T	P	С
21CEPC0U2	STRUCTURAL STEEL DESIGN	3	0	0	3

COURSE OBJECTIVES

- To design simple steel elements and the corresponding fasting systems are dealt with the course.
- To learn the design of steel structural elements along with advanced design concepts to enhance their design concepts with the relevant codal standards.

Unit-I

Introduction to Structural steel and their types – Advantages of structural steel – Design mythology – Limit State Design – Stress – strain curve of structural steels – Partial safety factors for loads and Materials – Deflection Limits. Bolted connections – shear capacity – Tension capacity – Bearing Capacity – Bolts subjected to combined shear and tension – Design of connections as per IS 800 – 2007 provisions. Welded connections – Butt joint – Lap joint – weld subjected to combination of normal and shear stress – combination of bearing bending and shear – Design of connections as per IS 800 – 2007 provisions.

Wind on Industrial steel Buildings – Design wind speed and pressure – Internal and external wind pressure coefficients form codes – Wind forces on members with height – Wind forces on Cladding, Louvers, hoarding structures, Microwave Towers – wind motion due to Vortex Shedding, dynamic response factor for along wind and across wind.

Unit-II

Tension members – Types – Design strength duo to yielding of cross section – Rupture of critical section – Plates – Threaded rod single Angles – Other sections – Block shear – Bolted and welded connection of Tension members – Design of Tension members as per IS 800 – 2007 provisions.

Compression members – Effective lengths – Slenderness ratios – Imperfection factor – Stress reduction factor – Bucking class of cross sections – Design details – Column Bases Angle Struts – Laced Columns – Battened columns – Design of compression members as per IS 800 – 2007 provisions.

Unit-III

Industrial buildings – Types – Elements of an industrial building – Loads on industrial buildings – Roof trusses – Components of a roof truss – Loads on roofs – Analysis and Design of roof truss. Tubular Trusses, joint details, tubular scaffoldings. Analysis and design of hoarding structures under dead live and wind load conditions (SP 64 (2001).

Unit-IV

Beams – Effective span of Beams – Design strength in Bending Torsional Buckling – Effective Length for simply supported beams – Shear – Beams of unsymmetrical sections – Plate girders – Elements of a plate girder Design of beams and plate girders as per IS 800 – 2007 provisions. Design of gantry girder – Braced industrial buildings – Un – braced industrial frames – Base plate with anchor bolt details – detailing as per IS standards.

Unit-V

Plastic analysis and design – Advantages and disadvantages – Plastic bending of beams – Plastic neutral axis – Plastic modulus – Plastic moment of resistance – Shape factor – Load factor – Plastic hinge – Collapse mechanisms – Theorems of plastic analysis – Analysis and Design of beams and frames.

Cold Form light gauge section – Type of cross section, Stiffened, multiple stiffened and un – stiffened element, Design of light gauge compression, tension and flexural members – Detailing as per IS: 802(Part 1 to part 3):1995.

TEXT BOOKS

- 1. Duggal.S.K., Limit state Design of Steel Structures, Tata McGraw Hill Education Private Ltd, 2000.
- 2. Sairam.K.S, Design Of Steel Structures, Pearson Publications, 2013.

REFERENCES

- 1. Shiyekar, Limit state Design of Steel Structures, Phi Learning Pvt Ltd, 2010.
- 2. Subramanian.N, Design of Steel Structures, Oxford University Press, 2008.
- 3. Design of Steel Structures Textbook, Bhavikatti.S.S, I.K. International Publishing House Pvt. Ltd, 2012.
- 4. Lam, Dennis and Thien Cheong Ang, Sing Ping Chiew, -Structural steelwork; design to limit state theory, 4th edition., CRC Press. 2014.

STANDARDS

- 1. IS: 800 2007, General Construction in Steel Code of Practice.
- 2. IS: 875(Part3): Wind Loads on Buildings and Structures. Teaching resource materials by INSDAG, Kolkatta.
- 3. IS: 802(Part 1 to part 3):1995 Code of practice for use of cold formed light gauge steel structural members in general building construction.
- 4. IS: 806 1968 Code of practice for use of steel tubes in general building construction.
- 5. IS: 4014 1967(Part I and II) Code of practice for steel tubular scaffolding.
- 6. SP: 6 (2) 1962 Steel beams and plate girders.
- 7. SP: 6 (5) 1980 Structural use of light gauge steel.
- 8. IS codes for Aluminium Structures, IS:3908, 3909, 3921, 5384, 6445, 6476, 6475, 6449, 8147, Bureau of Indian Standards.
- 9. SP 64 (2001): Explanatory Handbook on Indian Standard Code of Practice for Design Loads (other than Earthquake).

COURSE OUTCOMES

- 1. Get the fundamental knowledge about the different types of Steel sections available in the market.
- 2. Know the design of Connections and Different types of members which subjected to Various load conditions.
- 3. Design of industrial building components.
- 4. Design of girders and sections for various structural components.
- 5. Plastic analysis and design

					Марр	ing of	COs w	ith PC	s						
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO											PO12	PSO1	PSO2	PSO3
CO1	3	3	3			3		2		2			3	3	3
CO2	3	3	3			3		2		2			3	3	3
CO3	3	3	3			3		2		2			3	3	3
CO4	3	3	3			3		2		2			3	3	3
CO5	3	3	3			3		2		2			3	3	3

21 CECP607	IIICIIWAY ENGINEEDING I ADODATODY	L	Т	P	С
21 CECP607	HIGHWAY ENGINEERING LABORATORY	0	0	3	1.5

- To learn the principles and procedures of testing of aggregates
- To learn the principles and procedures of testing of binding material.

LIST OF EXPERIMENTS TEST ON AGGREGATES

Sieve Analysis

Elongation and Flakiness Index Test

Deval Abrasion Test

Impact Value Test

Crushing Value Test

TEST ON BITUMEN

Penetration Test

Viscosity Test

Softening Point Test

Ductility Test

Flash and Fire point

TESTS ON BITUMINOUS MIXES

Marshall Stability and Flow Values

REFERENCES

- 1. Highway Materials and Pavement Testing, Nem Chand and Bros., Roorkee, Revised Fifth Edition, 2009
- 2. Methods for testing tar and bituminous materials, IS 1201 1978 to IS 1220 1978, Bureau of Indian Standards
- 3. Methods of test for aggregates, IS 2386 1978, Bureau of Indian Standards
- 4. Mix Design Methods Asphalt Institute Manual Series No. 2, Sixth Edition, 1997, Lexington, KY, USA.

COURSE OUTCOMES

- 1. Understand the properties and test procedures of aggregate, bituminous materials, composites and recycled waste products.
- 2. Know the different types of bituminous pavement construction and its principles
- 3. Learn the properties of various aggregate used as pavement materials through relevant tests.

- 4. Know the principles and procedures of testing Concrete.
- 5. Arive the stability value of bituminous mix.

						M	apping	g of CC	s with	1 POs					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3						2	3		2		3	2	3
CO2	3	3						2	3		3		3	2	3
CO3	3	3						2	3		2		3	2	3
CO4	3	3						2	3		2		3	2	3
CO5	3	3						2	3		3		3	2	3

21 CECP608	STRUCTURAL DESIGN & DETAILING LABORATORY - II	L	T	P	С
Z1CECP008	SIRUCIURAL DESIGN & DETAILING LABORATORY - II	0	0	3	1.5

- To design simple steel elements and the corresponding fasting systems are dealt with the course.
- To learn the design of steel structural elements along with advanced design concepts to enhance their design concepts with the relevant codal standards.
 - ✓ Use of Software
 - ✓ CAD based Structural Drawing
 - ✓ Specifications & Drawings
 - ✓ For typical cases of Design of Foundation, Column, Beam
 - ✓ Special Structures

LIST OF EXPERIMENTS

- 1. Wind on Industrial steel Buildings Wind forces on Cladding, Louvers, hoarding structures, Microwave Towers
- 2. Design details Column Bases Angle Struts Laced Columns Battened columns
- 3. Design of compression members as per IS 800 2007 provisions.
- 4. Industrial buildings Roof trusses – Analysis and Design of roof truss. Tubular Trusses, joint details, tubular scaffoldings.
- 5. Beams Plate girders Elements of a plate girder Design of beams and plate girders as per IS 800 2007 provisions.
- 6. Plastic analysis and design Analysis and Design of beams and frames

TEXT BOOKS

- 1. Duggal.S.K, Limit state Design of Steel Structures, Tata McGraw Hill Education Private Ltd, 2000.
- 2. Sairam.K.S, Design Of Steel Structures, Pearson Publications, 2013.

REFERENCE BOOKS

- 1. Shiyekar, Limit state Design of Steel Structures, Phi Learning Pvt Ltd, 2010.
- 2. Design of Steel Structures, Subramanian.N, Oxford University Press, 2008.
- 3. Design of Steel Structures Textbook, Bhavikatti.S.S, I.K. International Publishing House Pvt. Ltd, 2012.
- 4. Krishnamachar B.S. and AjithaSimha., Design of Steel Structures^I, Tata McGraw Hill Publishing Company Ltd., New Delhi,1985.
- 5. IS 800 2007, Code of Practice for use of Structural Steel in General Building Construction, Bureau of Indian Standards, New Delhi.

STANDARDS

- 1. IS: 800 2007, General Construction in Steel Code of Practice.
- 2. IS: 875(Part3): Wind Loads on Buildings and Structures. Teaching resource materials by INSDAG, Kolkatta.
- 3. IS: 802(Part 1 to part 3):1995 Code of practice for use of cold formed light gauge steel structural members in general building construction.
- 4. IS: 806 1968 Code of practice for use of steel tubes in general building construction.
- 5. IS: 4014 1967(Part I and II) Code of practice for steel tubular scaffolding.

- 6. SP: 6 (2) 1962 Steel beams and plate girders.
- 7. SP: 6 (5) 1980 Structural use of light gauge steel.
- 8. IS codes for Aluminium Structures, IS:3908, 3909, 3921, 5384, 6445, 6476, 6475, 6449, 8147, Bureau of Indian Standards.
- 9. SP 64 (2001): Explanatory Handbook on Indian Standard Code of Practice for Design Loads (other than Earthquake).

COURSE OUTCOMES

- 1. Get the fundamental knowledge about the different types of Steel sections available in the market.
- 2. Know the design of Connections and Different types of members and Various load conditions
- 3. To design the Industrial steel Buildings
- 4. To design the Compression and tension members
- 5. To design the various types of beams

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3				3		3	3		3	3	3
CO2	3	3	3	3				3		3	3		3	3	3
CO3	3	3	3	3				3		3	3		3	3	3
CO4	3	3	2	3				3		3	2		3	3	3
CO5	3	3	3	3				3		3	3		3	3	3

SEVENTH SEMESTER

21 ETHS701	PROFESSIONAL PRACTICES LAW & ETHICS	L	T	P	С
21 E1R5701	PROFESSIONAL PRACTICES, LAW & ETHICS	2	0	0	2

COURSE OBJECTIVES

- To enable the students to create an awareness on Engineering Ethics and Human Values.
- To instill Moral and Social Values and Loyalty and to appreciate the rights of others.

Unit-I: Human Values

Morals, values and Ethics – Integrity – Work ethic – Service learning – Civic virtue – Respect for others – Living peacefully – Caring – Sharing – Honesty – Courage – Valuing time – Cooperation – Commitment – Empathy – Self confidence – Character – Spirituality – Introduction to Yoga and meditation for professional excellence and stress management

Unit-II: Engineering Ethics

Senses of _Engineering Ethics' - Variety of moral issues - Types of inquiry - Moral dilemmas - Moral Autonomy - Kohlberg's theory - Gilligan's theory - Consensus and Controversy - Models of professional roles - Theories about right action - Self - interest - Customs and Religion - Uses of Ethical Theories.

Unit-III: Engineering as Social Experimentation

Engineering as Experimentation – Engineers as responsible Experimenters – Codes of Ethics – A Balanced Outlook on Law.

Unit-IV: Safety, Responsibilities and Rights

Safety and Risk – Assessment of Safety and Risk – Risk Benefit Analysis and Reducing Risk

Respect for Authority - Collective Bargaining - Confidentiality - Conflicts of Interest - Occupational Crime - Professional Rights - Employee Rights - Intellectual Property Rights (IPR) - Discrimination.

Unit-V: Global Issues

Multinational Corporations – Environmental Ethics – Computer Ethics – Weapons Development – Engineers as Managers – Consulting Engineers – Engineers as Expert Witnesses and Advisors – Moral Leadership – Code of Conduct – Corporate Social Responsibility.

TEXT BOOKS

- 1. Mike W. Martin and Roland Schinzinger, Ethics in Engineering, Tata McGraw Hill, New Delhi, 2003.
- 2. Govindarajan M, Natarajan S, Senthil Kumar V.S., Engineering Ethics, Prentice Hall of India, New Delhi, 2004.

REFERENCES

- 1. Charles B. Fleddermann, Engineering Ethics, Pearson Prentice Hall, New Jersey, 2004.
- 2. Charles E. Harris, Michael S. Pritchard and Michael J. Rabins, Engineering Ethics Concepts and Cases, Cengage Learning, 2009.
- 3. John R Boatright, Ethics and the Conduct of Business, Pearson Education, New Delhi, 2003.
- 4. Edmund G Seebauer and Robert L Barry, Fundamentals of Ethics for Scientists and Engineers, Oxford University Press, Oxford, 2001.
- 5. Laura P. Hartman and Joe Desjardins, Business Ethics: Decision Making for Personal Integrity and Social Responsibility Mc Graw Hill education, India Pvt. Ltd., New Delhi, 2013.
- 6. World CommUNITy Service Centre, Value Education, Vethathiri publications, Erode, 2011.

COURSE OUTCOMES

Upon completion of the course, the student shall be able to

- 1. Apply ethics in society,
- 2. Discuss the ethical issues related to engineering
- 3. Realize the responsibilities and rights in the society.
- 4. Realize the safety and risk in engineering.
- 5. Understand the global issues in ethics.

6.

						M	apping	g of CC)s with	1 POs					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂	PSO3
CO1	3	2	1			1		3	2		3	2	2	1	2
CO2	2	2	1		1	3	2	3	1				2	1	2
CO3			2	1			2	3	1	1	2		2	1	2
CO4	2					3	2	3		1	2		2	1	2
CO5	1	2			3	2	3	3	2	3	2		2	1	2

21 CEPC702	PLANNING & COST EVALUATION	L	T	P	С
21CEPC102	PLANNING & COST EVALUATION	3	0	0	3

- To equip the students with current practices in cost and material estimates.
- To identify the methods adopted for different structural components.
- To impart knowledge on valuation practices necessary to make the student a complete civil engineer.
- To learn the tender procedure.

Unit-I

Introduction – Philosophy – Purpose – Types of estimates – UNITs of Measurements – Simple Problems in Approximate method of Estimates – Specifications – necessity – Type of Specifications – Writing Technical Specifications for Earth work excavation, PCC, Brick work, RCC, Plastering, Flooring, DPC, Painting, White washing.

Unit-II

Detailed estimates – Types – Estimate for Compound Wall – Simple Load Bearing and framed structures – Septic Tank – Water Sump – Estimates for Bituminous and Cement Concrete Roads – Retaining walls – culverts (Additional Practice in class roomusing computer softwares).

Unit-III

Purpose – Requirements – Schedule of Rates and Standard Data Book – Observed Data – Market Rates – Standard Data for Man Hours and Machineries for Common Civil Works – Rate Analysis for different items of construction work – Mortar – Concrete – Brick and R.R Masonry – Plastering works – Pointing – DPC works – Canals and Roads – Preparation of Abstract(Additional Practice in class room using computer softwares) – Analysis of Rates for item work asked, the data recording lobour, Rights of material and Rates of labour.

Unit-IV

Introduction – Types of Tenders – TTA Act 2000 – Drafting Model Tender Notice – Tender documents – Tender Procedure – E – Tendering – Digital signature certificates – Reverse actions – Contracts – Types of Contracts – Formation of contracts – Construction of Contract documents – Essentials of Contract conditions – Introduction to Arbitration and legal Requirements.

Unit-V

Introduction – Necessity – Types of Valuations – Introduction to Important terms like Market value, Scrap value, Guideline value, Earning value, Monopoly value, Distress value, Capital gain, free hold and Lease hold properties, Gift tax, Capitalized value, Depreciation – Valuations for Lands and Buildings – Fixation of Rent.

TEXT BOOKS

- 1. Dutta B.N., Estimating and Costing in Civil Engineering, S.Dutta & Company, Lucknow, 2005.
- 2. Chakraborthi M., Estimating and Costing Specifications in Civil Engineering, Kolkatta.

REFERENCE BOOKS

- 1. Rangwala S.C., Elements of Estimating and Costing in Civil Engineering, Charotar Publishing House, India.
- 2. Kohli D.D. and Kohli R.C., A Text Book of Estimating and Costing (Civil).
- 3. Banerjee D.N., Principles and Practices of Valuation, Eastern Law House, V Edition, 1998.
- 4. Vazirani, V.N. and Chandola S.P., Estimating and Costing, Khanna Publishers, New Delhi.
- 5. Rangwala S.C., Valuations of Real Properties.
- 6. Kanagasabapathy B., Practical Valuations.
- 7. Hand book of Consolidated Data 8/2000, Volume I, TNPWD.
- 8. TamilNadu Transparencies in Tender Act, 2000.

COURSE OUTCOMES

Upon completion of the course, the student shall be able to

- 1. Know the different types of rough estimates.
- 2. Know the different methods of detailed estimates.

- 3. Work out the rate for different construction works.
- 4. Understand the procedure of tenders and contract acts.
- 5. Gain the knowledge of valuation on lands and buildings.

						M	apping	g of CC	s with	POs					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2			1	3	1	2	1	1		2	3	3
CO2	3	2	3	2		2	3	2	2		2		3	3	3
CO3	2	2	3			1	3	3	2	1	2		2	3	3
CO4			2		2	3	3	3	1				1	3	3
CO5	1	2	2	2		3	3	2	2	1			3	2	3

21 CECP706	PLANNING & COST EVALUATION LABORATORY	L	T	P	С
21CECP 700	PLANNING & COST EVALUATION LABORATORY	0	0	3	1.5

- To equip the students with current practices in cost and material estimates in the field.
- To estimate the quantity of materials for different structural components .
- To impart knowledge on hands on practice with valuation practices necessary to make the student a complete civil engineer.

EXCERCISE

Quantity Estimation of different materials used in the following structures Residential Buildings

Pipeline Projects Industrial Infrastructures Road works

Use of Software for Quantity Surveying

Use of Expert Systems for Cost Evaluation

Case Studies on E – Tender and Global Tender

COURSE OUTCOMES

Upon completion of the course, the student shall be able to

Know the different methods of detailed estimates.

Work out the rate for different construction works.

Understand the procedure of tenders and contract acts.

Gain the knowledge of valuation on lands and buildings.

Have a practice of quantity estimation and valuation on site.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3				3	3	2	1		2	3	3
CO2		2	3	2	2		3	3	2	2			2	3	3
CO3			2			3	3	3	2			2	2	3	3
CO4					2	3		3	3		2		2	3	3
CO5						3		3	2		2		2	3	3

21**CEST707**

SEMINAR / INDUSTRIAL TRAINING / SWACHH PRACTICAL

L	T	P	C
_	TR	S	•
0	1	2	2

COURSE OBJECTIVES

- To expose students to the 'real' working environment and get acquainted with the organization structure, business operations and administrative functions.
- To have hands on experience in the students' related field so that they can relate and reinforce what has been taught at the university.
- To promote cooperation and to develop synergetic collaboration between industry and the university in promoting a knowledgeable society.
- To set the stage for future recruitment by potential employers

COURSE OUTCOMES

Upon completion of the course, the student shall be able to

- 1. Demonstrate the ability to identify, formulate and solve engineering problems.
- 2. Demonstrate the skills to use modern engineering tools, software's and equipment to analyze problems.
- 3. Demonstrate the knowledge of professional and ethical responsibilities.
- 4. Understand the impact of engineering solutions on the society and also will be aware of contemporary issues.
- 5. Develop confidence for self education and ability for life long learning

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3			2		3	2		2		3	3	3
CO2				3	3		2	3	3				3	3	3
CO3							2	3	2				3	3	3
CO4						3	3	3					3	3	3
CO5				2			2	3		3		3	3	3	3

EIGHTH SEMESTER

		L	T	P	С
21 CEPV803	PROJECT WORK AND VIVA – VOCE	•	PR	Ø	10
		0	6	4	10

COURSE OBJECTIVES

- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.
- To train the students in preparing project reports and to face reviews and viva voce examination.

COURSE OUTCOMES

- 1. On Completion of the project work students will be in a position to take up any challenging practical problems and find solution by formulating proper methodology
- 2. Carrying out any experimental works on construction planning, water resource planning & management and environmental aspects
- 3. Understand the modelling, analysis and design concepts related to civil engineering applications

.

						M	apping	g of CC	s with	ı POs					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	2			3		3	2	3	3	3
CO2					2	2		3	3	3	2		3	3	3
CO3			3	3	3	3	3	3	2	3	2	2	3	3	3

PROFESSIONAL ELECTIVES

OPPECON	INTECDATED WATER RECOURGES MANAGEMENT	L	T	P	C
CEPESCN	INTEGRATED WATER RESOURCES MANAGEMENT	3	0	0	3

COURSE OBJECTIVES

- To introduce the students to the interdisciplinary analysis of water and conceptual design of intervention strategies.
- To develop a knowledge base on capacity building on IWRM.
- To develop the ability among students to synthesis data and technical concepts for application in Integrated Water Resources Management.

Unit-I: IWRM Framework

Definition – Objectives – Principles – Evolution of IWRM – IWRM relevance in water resources management – Paradigm shift : Processes and prospective outcomes.

Unit-II: Contextualizing IWRM

UN formulations – SDG goals – IWRM in Global, Regional and Local water partnership – Institutional transformation – Bureaucratic reforms – Inclusive development.

Unit-III: Emerging Issues in Water Management

Emerging Issues – – Drinking water management in the context of climate change – IWRM and irrigation – Flood – Drought – Pollution – Linkages between water, health and poverty.

Unit-IV: IWRM and Water Resources Development in India

Rural Development – Ecological sustainability – – Watershed development and conservation – Ecosystem regeneration – Wastewater reuse – Sustainable livelihood – Food security

Unit-V: Aspects of Integrated Development

Capacity building – Conceptual framework of IWRM – Problems and policy issues – Solutions for effective integrated water management – Case studies.

TEXT BOOKS

1. Mollinga P. et al., Integrated Water Resources Management, Water in South Asia, Volume I, Sage Publications, 2006.

2. Sithamparanathan, Rangasamy, A., and Arunachalam, N., Ecosystem Principles and Sustainable Agriculture, Scitech Publications (India) Pvt.Lt, Chennai, 1999.

REFERENCES

- 1. Cech Thomas V., Principles of Water Resources: History, Development, Management and Policy. John Wiley and Sons Inc., New York. 2003.
- 2. Murthy, J.V.S., Watershed Management in India, Wiley Eastern Ltd., New York, 1995.
- 3. Dalte, S.J.C., Soil Conservation and Land Management, International Book Distribution, India, 1986.
- 4. Mollinga P., Integrated Water Resources Management, Water in South Asia Volume I, Sage Publications, 2006.

COURSE OUTCOMES

The students will be able to

- Understand objectives, principles and evolution of integrated water resources management.
- Have an idea of contextualizing IWRM
- Gain knowledge in emerging issues in water management, flood, drought, pollution and poverty.
- Understand the water resources development in India and wastewater reuse.
- Gain knowledge on integrated development of water management.

	Mapping of COs with POs														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0														
CO1						1		1					3	2	3
CO2			1			1	2	2	3	3			3	2	3
CO3	3	2	1			2	2	1	3	3	2	3	2	3	3
CO4	3	1		1			1	2	1	3	1		3	2	2
CO5	2	1			2	3	2	2	3	2	3	3	3	3	3

CEPESCN	IRRIGATION ENGINEERING	L	T	P	C
CEPESCN	IRRIGATION ENGINEERING	3	0	0	3

COURSE OBJECTIVES

- To impart knowledge about utilization of water for Irrigation and idea about irrigation system.
- The student is exposed to different phases in irrigation practices and Planning and management of irrigation.
- Student will be imparted required knowledge on Irrigation storage and distribution canal system and Irrigation management.

Unit-I: Crop Water Requirement

Need and classification of irrigation – historical development and merits and demerits of irrigation – types of crops – crop season – duty, delta and base period – consumptive use of crops – estimation of Evapotranspiration using experimental and theoretical methods.

Unit-II: Irrigation Methods

Tank irrigation – Well irrigation – Irrigation methods: Surface and Sub – Surface and Micro Irrigation – design of drip and sprinkler irrigation – ridge and furrow irrigation – Irrigation scheduling – Water distribution system – Irrigation efficiencies.

Unit-III: Diversion and Impounding Structures

Types of Impounding structures – Gravity dam – Forces on a dam – Design of Gravity dams; Earth dams, Arch dams – Diversion Head works – Weirs and Barrages.

Unit-IV: Canal Irrigation

Canal regulations – direct sluice – Canal drop – Cross drainage works – Canal outlets – Design of prismatic canal – canal alignments – Canal lining – Kennedy's and Lacey's Regime theory – Design of unlined canal.

Unit-V: Water Management in Irrigation

Modernization techniques – Rehabilitation – Optimization of water use – Minimizing water losses – On form development works – Participatory irrigation management – Water resources associations – Changing paradigms in water management – Performance evaluation – Economic aspects of irrigation.

TEXT BOOKS

- 1. Dilip Kumar Majumdar, Irrigation Water Management, Prentice Hall of India, New Delhi, 2008.
- 2. Garg, S.K., Irrigation Engineering and Hydraulic Structures, Khanna Publishers, 23rd, Revised Edition, New Delhi, 2009

REFERENCES

- 1. Punmia B.C., et al., Irrigation and water power Engineering, Laxmi Publications, 16th Edition, New Delhi, 2009.
- 2. Duggal, K.N. and Soni, J.P., Elements of Water Resources Engineering, New Age
- 3. International Publishers, 2005.
- 4. Linsley R.K. and Franzini J.B., Water Resources Engineering, McGraw Hill Inc, 2000.
- 5. Chaturvedi M.C., Water Resources Systems Planning and Management , Tata McGraw Hill Inc., New Delhi, 1997.

COURSE OUTCOMES

Students will be able to

- Have knowledge and skills on crop water requirements.
- Understand the methods and management of irrigation.
- Gain knowledge on types of Impounding structures
- Understand methods of irrigation including canal irrigation.
- Get knowledge on water management on optimization of water use.

	Mapping of COs with Pos														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
CO1	1		2			2		2	3				2	2	3
CO2			3			3		3				3	3	2	3
CO3	2		3			2	2	3	2	2			3	2	3
CO4	2		3			2	2	3	2	2		3	3	2	3
CO5						2		2	3				2	1	3

CEPESCN	DDE FADDICATED STRUCTURES	L	T	P	С
CEPESCN	PRE FABRICATED STRUCTURES	3	0	0	3

COURSE OBJECTIVES

- To impart knowledge to students on modular construction, industrialized construction.
- To learn to design prefabricated elements and their construction methods.
- To gain Knowledge on construction methods using prefabricated elements.

Unit-I

Need for prefabrication – Principles – Materials – Modular coordination – Modules/UNITs – Standardization of Systems – Production – Transportation – Erection Equipments – Erection Techniques.

Unit-II

Structural Systems: Skeletal Frame System – Large Panel System – Cell System. Systems for Lateral Load Resistance: Low – rise Portals and Frames – Multi – Storied Frames – Wall System. Roof and Floor Systems: Roof System – Floor System. Precast Concrete Components: Beams – Columns – Roof UNITs – Floor UNITs – Wall UNITs – Foundation UNITs – UNITs for Miscellaneous Applications.

Unit-III

Introduction – Materials – Loads: Dead Load – Live Load – Wind Load – Seismic Load – Equivalent Seismic Load Method – Response Spectrum Method – Time History – Abnormal Loads – Fire Resistance. Load Factor: Load Combinations. Analysis of Precast Frames: Skeletal Frames – Inverted U Shaped Frame – L Shaped Frame – H – Shaped Frame. Analysis of Frames with Stability Elements: Shear Walls to Resist

Lateral Loads – Details of Typical Example Building – Seismic Parameters of Analysis – Modelling and Analysis. Analysis of Voided Slab Floor Elements: Method of Analysis – Analysis of Typical Voided Slab using Grillage Analogy – Calculation of Member Properties – Loading – Longitudinal Analysis – Transverse Analysis.

Unit-IV

Design Consideration: Moment Resistance of Slabs – Moment Resistance of Rectangular Beams – Moment Resistance of T Beams – Moment Resistance of L Beams – Axial Load Capacities of Short and Slender Columns. Joints and Connections in Precast Buildings: Introduction – Scope – Details of Connections: Column to Foundation Connections – Wall to Foundation Connection – Beam to Column Connection – Column to Column Connection – Floor to Beam Connection – Wall Panel to Wall Panel Connection. Tolerances. Connection Materials – Mechanical Couplers – Dowels – Welded Head Studs – Bolted and Threaded Connections – Inserts – Expansion Inserts – Bearing Pads – Connecting Elements – Other Load Transfer Materials.

Unit-V

Production, Handling and Erection of Precast Elements: Production, Planning and Set up. Types of Precast Concrete Products: Foundations – Structural Elements. Moulds – Column Mould – Beam Mould – Wall Mould – Slab Mould – Other Moulds. Mould Tolerances, Production, Demoulding Techniques, Concrete and Vibrations, Precast Concrete Products Tolerances, Curing and Storage, Transportation, Handling Equipments for Precast Components, Handling Devices for Lifting, Erection Schemes and Supports, Other Accessories for Erection Works, Safety, Installation of Precast Element: Installation of vertical Members – Installation of Beams – Installation of Slabs – Installation of Special element. Common Defects and Acceptance Criteria: Hollow Core Slabs – Pre – stressed Planks/Slabs – RCC Products – Non – Conforming Products – Quality Assessment.

TEXT BOOKS

- 1. Indian Concrete Institute (ICI), Handbook on Precast Concrete for Buildings, 1st Edition, 2016.
- 2. Gerostiza, C.Z., Hendrikson, C. and Rehat, D.R., Knowledge based process planning for construction and manufacturing, Academic Press Inc., 1994.

REFERENCES

- 1. CBRI, Building materials and components, India, 1990.
- 2. Koncz, T., Manual of precast concrete construction, Vol. I, II and III, Bauverlag, GMBH, 1976.
- 3. Society for the studies in the use of precast concrete, Structural design manual, Precast concrete connection details, Netherland Betor Verlag, 2009.
- 4. Glover.C.W., Structural Precast Concrete, Asia Publishing House, Bombay, 1967.

COURSE OUTCOMES

- Realize the need for prefabrication in construction.
- Design some of the prefabricated elements
- Understand the construction techniques involved in building framed structures.
- Insist on Quality in precast construction.
- Understand the production, Handling and Erection of Precast Elements

						M	apping	g of CC	s with	ı POs					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2				3	3							2	1	3
CO2				3	3				3				3	2	3
CO3	2				3				3			3	3	2	3
CO4	2		3						3				3	2	3
CO5	2								3			3	3	2	3

CEPESCN	TRAFFIC ENCINEEDING 2- MANACEMENT	L	T	P	С
CEPESCN	TRAFFIC ENGINEERING & MANAGEMENT	3	0	0	3

- To give an overview of traffic engineering characteristics, traffic control and design.
- To understand the techniques of traffic survey and traffic regulation.
- To expose students to traffic management and traffic safety with integrated approach in traffic planning.
- To learn the environmental impact of traffic.

Unit-I: Introduction to Traffic Engineering

Introduction – Objectives and scope of traffic engineering – Components of road traffic: vehicle, driver and road – Road user and vehicle characteristics and their effect on road traffic – Fundamentals of Traffic Flow – Urban Traffic problems in India and Sustainable approach.

Unit-II: Traffic Surveys

Traffic Surveys – Speed, journey time and delay surveys – Vehicles Volume Survey including non – motorized transports – Methods and interpretation – Origin Destination Survey – Methods and presentation – Parking Survey – Accident analyses – Methods, interpretation and presentation – Statistical applications in traffic studies and traffic forecasting – Level of service – Concept, applications and significance.

Unit-III: Geometric Design of Traffic Engineering

Control of traffic movements through time sharing and space sharing concepts – Intersection Design – channelization – Rotary intersection design – Signal design – Coordination of signals – Grade separation – Traffic signs including VMS and road markings – Significant roles of traffic control personnel – Bus stop location and bus bay design – Road lighting – Regulations on vehicles – drivers and traffic.

Unit-IV: Traffic Studies

Concept and significance of traffic safety – Road accidents – Causes, effect, prevention, and cost – Road traffic accidents scenario in India – Engineering measures of traffic safety – Traffic and environment hazards – Air and Noise Pollution, causes, abatement measures – Promotion and integration of public transportation – Promotion of non – motorized transport.

Unit-V: Traffic Management System Application

Nature of traffic problems in cities – Area Traffic Management System – Traffic System Management (TSM) with IRC standards – Traffic Regulatory Measures – Travel Demand Management (TDM) – Direct and indirect methods – Congestion and parking pricing – All segregation methods – Coordination among different agencies – Intelligent Transportation Systems: applications in traffic management and control.

TEXT BOOKS

- 1. Kadiyali L.R., Traffic Engineering and Transport Planning, Khanna Publishers, Delhi, 2013.
- 2. Indian Roads Congress (IRC) Specifications: Guidelines and Special Publications on Traffic Planning and Management.

REFERENCES

- 1. Pignataro L., Traffic Engineering Theory and Practice, John Wiley, 1973
- 2. Salter. R.I. and Hounsell N.B., Highway Traffic Analysis and Design, Macmillan Press Limited, 1996.
- 3. Fred L. Mannering, Scott S. Washburn and Walter P.Kilareski, Principles of Highway Engineering and Traffic Analysis, Wiley India Private Limited, New Delhi, 2011.
- 4. Garber and Hoel, Principles of Traffic and Highway Engineering, Cengage Learning, New Delhi, 2010.
- 5. SP: 43 1994, Guidelines on Low-cost Traffic Management Techniques for Urban Areas, IRC Specifications, 1994.
- 6. Institute of Transportation Engineers, Transportation and Traffic Engineering Hand Book, Prentice Hall, 1982.
- 7. John E. Tyworth, Traffic Management Planning Operations and Control, Addison Wesly Publishing Company, 1997.
- 8. Hobbs F.D., Traffic Planning and Engineering, University of Birmingham, Peragamon Press Limited, 2005.

9. Taylor M.A.P. and Young W., Traffic Analysis – New Technology and New Solutions^{II}, Hargreen Publishing Company, 1998.

COURSE OUTCOMES

At the end of the course students will be able to

- Understand the concepts of traffic engineering and its characteristics.
- Perform traffic studies.
- Explain traffic control and design.
- Realize the importance of traffic management.
- Identify the specification of traffic facilities.

						M	apping	g of CC	s with	1 POs					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3				3							2	2	3
CO2		2	3		3								2	2	3
CO3	2		3			3							2	2	3
CO4	2							3		3			2	2	3
CO5	2			3						3			2	3	3

CEPESCN	ADVANCED CONSTRUCTION TECHNIQUES	L	T	P	С
CEPESCN	ADVANCED CONSTRUCTION TECHNIQUES	3	0	0	3

COURSE OBJECTIVES

- To Demonstrate the major changes that have occurred in the representation and construction of buildings between the modern and pre modern eras
- To study and understand the latest construction techniques applied to engineering construction for sub structures, super structures and special structures.
- To learn about rehabilitation and strengthening techniques and demolition techniques.

Unit-I

Box jacking – Pipe jacking – Under water construction of diaphragm walls and basement – Tunneling techniques – Piling techniques – Driving well and caisson – sinking cofferdam – cable anchoring and grouting – Driving diaphragm walls, Sheet piles – Laying operations for built up offshore system – Shoring for deep cutting – Large reservoir construction – well points – Dewatering for underground open excavation.

Unit-II

Vacuum dewatering of concrete flooring – Concrete paving technology – Techniques of construction for continuous concreting operation in tall buildings of various shapes and varying sections – Erection techniques of tall structures, Large span structures – launching techniques for heavy decks – in – situ pre – stressing in high rise structures, Post tensioning of slab – aerial transporting – Handling and erecting lightweight components on tall structures.

Unit-III

Erection of lattice towers – Rigging of transmission line structures – Construction sequence in cooling towers, Silos, chimney, sky scrapers – Bow string bridges, Cable stayed bridges – Launching and pushing of box decks – Construction of jetties and break water structures – Construction sequence and methods in domes – Support structure for heavy equipment and machinery in heavy industries – Erection of articulated structures and space decks.

Unit-IV

Seismic retrofitting – Strengthening of beams – Strengthening of columns – Strengthening of slab – Strengthening of masonry wall, Protection methods of structures, Mud jacking and grouting for foundation – Micro piling and underpinning for strengthening floor and shallow profile – Sub grade water proofing, Soil Stabilization techniques.

Unit-V

Demolition Techniques, Demolition by Machines, Demolition by Explosives (implosion), Advanced techniques using Robotic Machines, Demolition Sequence, Dismantling Techniques, Safety precautions in Demolition and Dismantling.

TEXT BOOKS

- 1. Jerry Irvine, Advanced Construction Techniques , CA Rocketr, 1984.
- 2. Patrick Powers. J., Construction Dewatering: New Methods and Applications^{||}, John Wiley & Sons, 1992.

REFERENCES

- 1. Peter H. Emmons, Concrete repair and maintenance illustrated, Galgotia Publications Pvt. Ltd., 2001.
- 2. Robertwade Brown, Practical foundation engineering hand book, McGraw Hill Publications, 1995.
- 3. Sankar, S.K. and Saraswati, S., Construction Technology, Oxford University Press, New Delhi, 2008.
- 4. Jha J. & Sinha S.K., Building Construction Khanna Publishers.

COURSE OUTCOMES

At the end of the course students will be able to

- Know the modern construction techniques to be used in the construction of buildings and special structures
- Understand rehabilitation and strengthening techniques and demolition.
- Aware of safety precautions in Demolition and Dismantling.
- Gain a knowledge on retrofitting of structural elements and sub grade water proofing and soil stabilization
- Understand the demolition techniques by using advanced demolition machines and explosion.

	Mapping of COs with POs														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
CO1	1	1	2		3		1		3				2	2	3
CO2		2	2		3	2	1	1	2	1			2	2	3
CO3		2	1		2	2			2			2	2	2	3
CO4	2	2	3	3		2		1	2		1		3	2	3
CO5	2	1	2		3		1		3				2	3	3

CEPESCN	MEMBRANE TECHNOLOGY	L	T	P	С
CEPESCN	WEMBRANE IECHNOLOGI	3	0	0	3

COURSE OBJECTIVES

- Necessity and advantages of Membrane technology in place of conventional systems for water and wastewater treatment
- Membrane Types, Proprietary data and Expert systems for planning and designing of Membrane based treatment plants
- Operation and maintenance of membrane based plants.

Unit-I

Solids removal suspended solids and dissolved solids – organic, inorganic and inert solids – membrane processes – principle and theory – materials of membranes – proprietary products – selectivity modules – concentration polarization – membrane fouling and cleaning – applications.

Unit-II

Mechanism of membrane transport – RO/UF transport – solution diffusion model – dual sorption model – free volume theory – pore flow model – resistance model – boundary layer film model – Membrane

modules; flat cartridge, spiral wound, tubular hollow fibre - Design equations - Expert systems of proprietary products.

Unit-III

Membrane preparation techniques – isotropic membranes anisotropic membranes metal membranes, ceramic membranes liquid membranes and biomembranes.

Unit-IV

Hierarchy of Membranes – Landscape of Membrane – MF UF, NF and RO – Propritery products – specific applications and limitations – Applications.

Unit-V

Engineering aspects of membranes; Hybrid membrane techniques; membrane reactor, membrane distillation membrane extraction and osmotic distillation – Design equations – Applications.

TEXT BOOKS

- 1. Mihir K. Purkait, Randeep Singh, Membrane technology in separation science 1st edition, CRC Press.
- 2. Richard W.Naker, Membrane Technology and Applications. John Wiley and Sons, 2004.

REFERENCES

- 1. Christie J. Geankoplis,, Transport Process and UNIT Operations, 3rdEdn., Prentice Hall of India Pvt. Ltd.
- 2. Sun, Tak, Hwang and Karl Kammermayer, Membranes in separations, John Wiley and Sons, New York
- 3. Richard W.Naker, Membrane Technology and Applications. John Wiley and Sons, 2004.
- 4. Separation Process Principles by J.D. Seader and Ernest J.Henley, John John Wiley and Sons, 2000.
- 5. Coulson J.M and Richardson, Chemical Engineering Particle Technology and Separation Process Vol.2 th edition. Asian Books Pvt. Ltd. New Delhi 1998.
- 6. Warren L.McCabe, Julian Smith and Peter Harriot, UNIT Operations of Chemical Engineering, th edition. 2004.
- 7. Judson King .C Separation Process, McGraw Hill Inc., 1980.
- 8. Hoffman E.J, Membrane separations Technology Single stage, multi stage and Differential permeation, Gulf Professional Publishing.

COURSE OUTCOMES

- Understand the principles of different membrane manufacturing methods.
- Ability to know which materials are most suitable for membrane separation/purification of various liquid streams depending on the liquid composition and selected process parameters such as temperature and pressure.
- Gain knowledge of membrane capabilities and constraints in the aspects of Engineering.
- Develop skills to choose appropriate membrane process for a specific application.
- Understand the principles and application of reverse osmosis microfiltration and ultra filtration.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1											2	1	
CO2	2		2	3	3	1					2	3	1	3	1
CO3	3		2	2						2			3	3	2
CO4	2	2	3	2	2						2		2	3	2
CO5	1	2	1			3						3	3	3	1

CEPESCN	CONSTRUCTION PLANNING & MANAGEMENT	L	T	P	С
CEPESCN	CONSTRUCTION PLANNING & MANAGEMENT	3	0	0	3

- To introduce the practices of various stages of construction.
- To learn elements of management, project planning and cost analysis.
- To acquire knowledge on PERT and CPM.

Unit-I

Introduction – Classification of Construction work – Stages in Construction – Construction Team – Resources for construction – Objectives and Functions of Construction Management and its Applications.

Unit-II

Types of organisation – principles – site organization – Scrutiny of site documents – Job layout – principles of storing materials – Organisation of labour – Construction labour – Organization of PWD and related departments – Functions – Method of executing work – Miscellaneous Topics.

Unit-III

Project planning – Contract Planning, Scheduling and Control – Material Handling – Constructional practices – Contract – types of contract – contract document – specification – important conditions of contract – tender and tender document – Deposits by the contractor – Arbitration – Negotiation – M.Book – Muster roll – stores – Lab components: Introduction to Microsoft projects and Primavera – Preparation of schedule for a project by using Microsoft projects and Primavera.

Unit-IV

Project management – Bar charts and Milestone charts – Network methods – PERT – CPM – Comparison of PERT and CPM – Cost and Time optimization – development and elements of network – Activity time – estimate events times – concept of floats – critical activities and critical path – Cost analysis – direct and indirect cost – normal and crash duration – cost slope – cost optimization – updating – resources smoothing – resources levelling.

Unit-V

Construction quality – inspection, quality control and quality assurance – total quality management and their techniques – cost of quality – ISO standards – audit – evaluation of safety – accident causation theories – foundation of a major injury – health and safety act and regulations – cost of accidents – principles of safety – safety and health management systems.

TEXT BOOKS

- 1. Harpal Singh, Construction Management and Accounts, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2007.
- 2. Vazirani, V.N. and Chandola, S.P., Construction Management and Accounts, Khanna Publishers, New Delhi, 2011.

REFERENCES

- 1. Subramanya, K., Construction Management, Tata McGraw Hill Publishing Company Ltd., New Delhi, 1989.
- 2. Punmia, B.C. and Khandelwal, K.K., Project Planning and Control with PERT and CPM, Laxmi Publications (P) Ltd., New Delhi, 2009.
- 3. Sharma, S.C., Construction Engineering and Management, Khanna Publishers, New Delhi, 2008.
- 4. Murugesan G., Total Quality Management , Laxmi Publications, New Delhi, 2013.
- 5. CADD Centre Manual, Project planning and management by using MS Project, CADD Centre Training Services Pvt. Ltd., 2010.
- 6. CADD Centre Manual, Primavera Training Manual, CADD Centre Training Services Pvt. Ltd., 2010.

COURSE OUTCOMES

- Develop the ability to influence project design and to manage pre construction activities.
- Understand method of control of project schedule, cost, quality and risks.

- Realize ethics of project management.
- Acquire knowledge on Tenders and related procedures.
- Recognize the significance of safety and health management.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1							1	2			3	3	2	2	3
CO2					1		2	3					3	2	3
CO3						1	2	3					3	2	3
CO4					1		2	3					2	2	3
CO5		1				3		3			3	3	2	2	3

CEPESCN	INDUSTRIAL WASTE WATER ENGINEERING	L	T	P	С
CEPESCN	INDUSTRIAL WASTE WATER ENGINEERING	3	0	0	3

- To make the students conversant with basic principles of wastewater engineering.
- To impart knowledge on sources and characteristics of various industrial wastes and strategies for its prevention and control
- To learn about collection, conveyance, characterization, treatment and disposal of domestic wastewater.

Unit-I

Definitions: Sewage, Sewer and Sewerage – Collection & Conveyance of sewage – Classification of sewerage systems – Quantity of sewage – Fluctuation of sewage flow – Hydraulics of sewers – Self cleaning velocity – Shapes of sewers – Hydraulic design of sewers – Hydraulic design of storm water drains.

Unit-II

Materials for sewers – Joints in sewers – Laying & testing of sewers – Ventilation – Cleaning of sewers – Sewer appurtenances – Pumps – Types of pumps – Pumping station. Principles and layout of house drainage systems – Sanitary fixtures and fittings – one pipe systems and two pipe systems.

Unit-III

Characteristics and composition of wastewater – Analysis of physical, chemical and biological characteristics – B.O.D. and its significance – Population Equivalent – Domestic, Municipal and Industrial wastewater – Objectives of wastewater disposal – Methods of disposal – discharge into bodies of water – Hydraulic of sewers: Self cleansing velocity, Decomposition cycles.

Unit-IV

Septic tanks and disposal arrangements – Imhoff tank – Intermittent sand filters – Oxidation Pond & Ditch – Aerobic, Anaerobic and combinations of processes – Primary & Secondary Treatment – UNIT operation & processes in wastewater treatment: Screens, Grit chamber, Skimming tank and Settling tanks.

Unit-V

Aerobic Methods: Activated Sludge Process – Methods of Aeration – Trickling Filters – Anaerobic Methods: Digesters – Disinfection for reuse – Sludge treatment – Sludge digesters – Methods of sludge disposal – Operation and maintenance aspects.

TEXT BOOKS

- 1. Punmia, B.C., Ashok Kumar Jain and Arun Kumar Jain, Environmental Engineering Wastewater Engineering, Laxmi Publications, 2004.
- 2. Rangwala, S.C., Water Supply and Sanitary Engineering, Charotar Publication House Pvt. Ltd., Gujarat, 2013.

REFERENCES

- 1. Garg, S.K., Sanitary Engineering, Khanna Publishers, 2005.
- 2. Duggal, K.N., Environmental Engineering, S.Chand & Company, 2004.
- 3. Metcalf, L. and Eddy, H.P., Wastewater Engineering, Collection, Treatment, and Disposall, McGraw Hill Publishers, 4th Edition, 2003.
- 4. Davis & Corwell, Environmental Engineering, McGraw Hill Series in Civil and Environmental Engineering, 2012.
- 5. Gerald Kiely, Environmental Engineering, Tata McGraw Hill Education, 2007.

COURSE OUTCOMES

At the end of the course students will be able to

- Apply the main procedures and methods of treatment for wastewater.
- Develop on Environmental Management Systems.
- Explain different methodologies for collection and conveyance of wastewater.
- Examine the physical, chemical and biological characteristics of wastewater.
- Suggest suitable methods for treatment and disposal.

	Mapping of COs with Pos PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3				3						3			
CO2	3	3				3			2						
CO3		3		2		3									
CO4			2		3				3						
CO5		3				3		3	3			3			

CEDESCN	DEMOTE SENSING & CIS	L	T	P	С
CEPESCN	REMOTE SENSING & GIS	3	0	0	3

COURSE OBJECTIVES

- To introduce the basic concepts of remote sensing.
- To learn the fundamentals of photogrammetric and image interpretation.
- To understand the techniques involved in cartography and GPS.
- To impart knowledge on applications of RS and GIS in resource mapping.

Unit-I

Definition of RS and its components – Electromagnetic spectrum – wavelength regions important to remote sensing – Wave theory, Particle theory, Stefan – Boltzman and Wein's Displacement Law – Atmospheric scattering, absorption – Atmospheric windows – spectral signature concepts – typical spectral reflective characteristics of water, vegetation and soil – types of platforms – orbit types – Sun – synchronous and Geosynchronous – Passive and Active RS – Parameters of Sensors.

Unit-II

Types of data products – types of image interpretation – basic elements of image interpretation – visual interpretation keys – Digital Image Processing – Pre – processing – image enhancement techniques – image classification – Supervised and Unsupervised.

Unit-III

Maps – Definitions – Map coordinate systems – Map projections – types of map projections – Fundamentals of GPS – components of GPS – GPS data collection methods – application of GPS – GIS definition – basic components of GIS – standard GIS software – Data type – Spatial and non – spatial (attribute) data – measurement scales – Types of files – Data Base Management Systems (DBMS) types.

Unit-IV

IS Data models – vector and raster data – Raster data compression – data input by digitization and scanning – GIS data errors and remedial measures – attribute data analysis – integrated data analysis.

Unit–V

Modeling in GIS: Highway alignment studies – Land Information System – Change Detection – Land use/ Land cover mapping – Watershed management – Water quality mapping – surface and groundwater resources mapping.

TEXT BOOKS

- 1. Lillesand, T.M., Kiefer, R.W. and Chipman. J.W., Remote Sensing and Image Interpretation, John Wiley and Sons (Asia) Private Limited, New York, 2007.
- 2. Kang tsung Chang, Introduction to Geographical Information System, Tata McGraw Hill Edition, 2009.

REFERENCES

- 1. Basudeb Bhatta, Remote Sensing and GISI, Second Edition, Oxford University Press, 2011.
- 2. Agarwal. C.S. and Garg. P.K., Remote Sensing in Natural Resources Monitoring and Management, Wheeler Publishing Company, 2000.
- 3. Peter A. Burrough and Rachael A. McDonnell, Principles of Geographical Information systems for land resource assessment, Clarendon Press, Oxford University Press, 2004.
- 4. Anji Reddy. M., Textbook of Remote Sensing and Geographical Information System^I, 2nd Edition, BS Publications, Hyderabad, 2001.
- 5. Ian Heywood, Sarah Cornelius, Steve Carver and Srinivasa Raju, An Introduction to Geographical Information Systems^{||}, Pearson Education, 2 nd Edition, 2007.
- 6. Wolf Paul, Elements of Photogrammetry, McGraw Hill Edition, New Delhi, 1998.
- 7. Clarke Parks and Crane, Geographical Information Systems and Environmental Modelling, Prentice Hall of India, 2005.

COURSE OUTCOMES

- 1. Identify the concepts and characteristics of Remote Sensing.
- 2. Acquire knowledge of appropriate map projection and coordinate systems.
- 3. Understand GIS, its structure, quality and standards.
- 4. Get exposure to several applications of RS and GIS in the various fields of Civil engineering especially resource mapping.
- 5. Apply GIS and LIS techniques to highway alignment, watershed management, Water quality mapping and surface & groundwater resources.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	2							2	2	3
CO2	3	3	3		3							2	2	2	3
CO3	1	1	1	3	1	3		2		1		1	2	2	3
CO4				3				3		3			3	2	3
CO5	1	1	1	3	3	3	1				1		2	3	3

CEDECON	TO A NODODTATION ENGINEEDING	L	T	P	С
CEPESCN	TRANSPORTATION ENGINEERING	3	0	0	3

- To give an overview of Transportation engineering with respect to the development, planning and design.
- To impart knowledge on transportation economics and the public transportation system
- To expose students to the basics of global view of transportation system and intelligent system

Unit-I: Introduction to transportation engineering

History and development – Transportation system, Major disciplines and other important disciplines – Role of transportation in society – Economic role, Social role, Political role, Environmental role – Factors affecting transportation – Human factor, Vehicle factor, Road user and Road factors.

Unit-II: Transportation Planning

Introduction, System approach and Stages – Transportation surveys – Zoning and types of surveys – Trip generation and trip distribution – Modal split, Evaluation techniques and Land use transport models – Lowry derivative models – Quick response techniques – Transportation planning for small and medium sized cities.

Unit-III: Transportation Economics

Introductory Concepts – Economic evaluation of transportation plans – Need, Cost and benefits of transportation projects and Methods; Benefit – cost ratio, First year rate of return, Net present value and internal rate of return – Vehicle operating cost – Value of travel time – Accidents cost – Economics of traffic congestion – Financing of road projects – methods – Private Public Partnership (PPP) – Toll collection – Economic viability of Design – Build – Operate – Transfer Schemes

Unit-IV: Public Transportation Systems

Public Transport: Definitions, modes of public transport and comparison – road, rail, rapid transit systems – Design of Facilities: Design of bus stops, design of terminals – Promotion of public transport – Present difficulties in urban traffic condition

Unit-V: Intelligent Transportation Systems

Introduction to Intelligent Transportation Systems (ITS) – Telecommunications in ITS – ITS functional areas – ITS User Needs and Services Automated Highway Systems – Global ITS Programs – Logistics in transportation

TEXT BOOKS

- 1. Kadiyali.L.R., Traffic Engineering and Transport Planning, Khanna Publishers, New Delhi, 2013.
- 2. Khanna.S.K. and Justo. C.E.G., Highway Engineering, NemChand & Brothers, Roorkee, 2005.

3.

REFERENCES

- 1. Bindra S.P., Basic Highway Engineering, Dhanpat Rai & Sons, New Delhi, 1977.
- 2. Vazirani V.N. and Chandola S.P., Transportation Engineering Volume I & III, Khanna, Publishers, New Delhi, 2000.
- 3. Kadiyali L.R. and Lal N.B., Principles and Practices of Highway Engineering, Khanna Publishers, New Delhi, 2008.
- 4. Paul K. Wright and Karen K. Dixon, Highway Engineering, Replica Press Limited, Kundli, Seventh Edition.Indian Roads Congress (IRC) Specifications, Guidelines and Special Publications on Traffic Planning and Management, 1994.
- 5. Papacostas C.S. and Prevedouros P.D., Transportation Engineering & Planning, Prentice Hall of India, Third Edition, 2001.
- 6. Rao G.V., Principles of Transportation and Highway Engineering, Tata McGraw Hill Company, 2004.
- 7. Chakraborthy and Das, Principles of Transportation Engineering, Prentice Hall of India, 2005.
- 8. Narasimha Murthy. A.S. and Henry R. Mohle, Transportation Engineering Basics, ASCE Press, 2000.

COURSE OUTCOMES

At the end of the course students will be able to

- 1. Classify the different types of transportation systems
- 2. Plan a transport system for urban and rural system
- 3. Understand the economic evaluation of transportation
- 4. Plan various public transportation systems
- 5. Demonstrate various application of intelligent transport system.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3								3					
CO2						3				3	3				
CO3	3					3					3				
CO4			3	3					3						
CO5	3				3				3		3				

OFDECON	ADCHIMECTURE	L	T	P	С
CEPESCN	ARCHITECTURE	3	0	0	3

COURSE OBJECTIVES

- To introduce various Architectural aspects.
- To understand the history of Architecture.
- To realize the impact of climate on Architecture Buildings.

Unit-I

Review of History of Architecture – Egyptian Mesopotamia classical and Indian Buddhist Architecture – Evolution of Hindu temple Architecture – Islamic and Mughal Architecture – Influences of Architecture on Nature, Climate, Topography and Materials – Represented plan – Growth of mass from plan – Space organization – Principles of composition, contrast, proportion, scale, balance, UNITy, character of composition.

Unit-II

Shelter or form – Climate and thermal comfort in India – Passive heating and cooling strategies – settlement patterns and site planning – Openings in Hot climates – Wind, Sun and Shading – Day lighting – Natural ventilation of buildings in India – Appropriate Technology for a Climatically Responsive Energy Architecture – Projects and Case studies.

Unit-III

Planning of residential buildings – Space UNITs of Living, Dining, Sleeping areas, Kitchens and Bathrooms – Single storied, double storied Residential buildings with different roofing systems – Multiple accommodations – Apartments – Group Housing – – Housing for Handicapped – Housing for Elders – Youth Hostels.

Unit-IV

Planning concept of commercial buildings – Requirements of Spaces – Parking standards – Shopping centre – Banks – Super Markets – Hotel / Motel – Planning concept of Health Structures – requirements of spaces depends on specialty of disease – Medical Centres – Sub Health Centres – Laboratories – Medical Institutions – Concept Line Drawings – Projects.

Unit-V

Planning concept of Institutional Structures – Planning Concept of Play way / Kinder Garden Schools, Elementary, Secondary and Senior Secondary Schools, Library buildings – Technical Institutions

– Institutionsfor Humanities Studies – Gymnasium and Swimming Pools – Planning concepts of Industrial Structures – General – Workshop – Ware Houses – Machine Housings.

TEXT BOOKS

- 1. Pramar. V.S., Design fundamental in Architecture, Somaiya Publications Pvt. Ltd., New Delhi, 1997.
- 2. Arvind Krishnan, Nick Baker, Simos Yannas, Szokolay S.V., Climate Responsive Architecture., A Design Hand Book for Energy Efficient Building, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2007.
- 3. Ernest Pickering, Architecture Design, John Wiley & Sons.
- 4. Muthu Shoba Mohan.G., Principles of Architecture, Oxford University Press., New Delhi, 2006.
- 5. M. Pratap Rao, Architectural Design Theory & Design.
- 6. Arvind Krishnan, Nick Baker, Simos Yannas, Szokolay S.V., Climate Responsive Architecture. A Design Hand Book for Energy Efficient Building, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2007.
- 7. National Building Code of India., SP7 (Group 1) Bureau of Indian Standards, New Delhi, 2005.
- 8. Recognize the different qualities of Architecture.
- 9. Understand that Architecture can enhance the building in terms of appearance and utility.
- 10. Realize that Architectural design can improve comfort in living conditions of buildings.
- 11. Apply Architectural concept and design buildings according specific requirements.
- 12. Concept of Institutional Structures.

						M	apping	g of CC	s with	ı POs					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2										3			
CO2		3		2		3	3								
CO3			3				3	3				3			
CO4						3		3	3						
CO5		2		3						3					

CEPESCN	RAILWAYS, AIRPORTS AND HARBOUR ENGINEERING	L	T	P	С
CEPESCN	RAILWAIS, AIRPORTS AND HARBOUR ENGINEERING	3	0	0	3

COURSE OBJECTIVES

- To introduce the students about Railways planning, design, construction and maintenance.
- Planning design principles of airport and harbour.

Unit-I: Railway Planning and Construction

Elements of permanent way – Rails, Sleepers, Ballast, rail fixtures and fastenings, Selection of gauges – Track Stress, coning of wheels, creep in rails, defects in rails – Route alignment surveys, conventional and modern methods – – Geometric design of railway, gradient, super elevation, widening of gauge on curves – Level Crossings.

Unit-II: Railway Construction and Maintenance

Earthwork – Stabilization of track on poor soil – Track drainage – Calculation of Materials required for track laying – Construction and maintenance of tracks – Railway Station and yards and passenger amenities – Signalling

Unit-III: Airport Planning

Air transport characteristics – airport classification – ICAO – airport planning: Site selection typical Airport Layouts, Case Studies, parking and Circulation Area

Unit-IV: Airport Design

Runway Design: Orientation, Wind Rose Diagram, Problems on basic and Actual Length, Geometric Design – Elements of Taxiway Design – Airport Zones – Passenger Facilities and Services – Runway and Taxiway Markings.

Unit-V: Harbour Engineering

Definition of Basic Terms: Harbour, Port, Satellite Port, Docks, Waves and Tides – Planning and Design of Harbours: Harbour Layout and Terminal Facilities – Coastal Structures: Piers, Break waters, Wharves, Jetties, Quays, Spring Fenders, Dolphins and Floating Landing Stage – Inland Water Transport – Wave action on Coastal Structures and Coastal Protection Works

TEXTBOOKS

- 1. Subramanian K.P., Highways, Railways, Airport and Harbour Engineering, V Scitech Publications (India), Chennai, 2010
- 2. Khanna.S.K. Arora.M.G and Jain.S.S, Airport Planning and Design, Nemachand and Bros, Roorkee, 1994

REFERENCES

- 1. Saxena Subhash, C.and Satyapal Arora, A Course in Railway Engineering, Dhanapat Rai and Sons, Delhi, 1998
- 2. Venkatramaiah. C., Transportation Engineering Vol.2 Railways, Airports, Docks and Harbours, Bridges and Tunnels., Universities Press (India) Private Limited, Hyderabad, 2015.
- 3. Mundrey J.S., Railway Track Engineering, McGraw Hill Education (India) Private Ltd, New Delhi, 2013.
- 4. Srinivasan R. Harbour, Dock and Tunnel Engineering, 26th Edition 2013.

COURSE OUTCOMES

Students who successfully complete this course will be able to:

- Understand the methods of route alignment and design elements in Railway Planning and Constructions.
- Understand the Construction techniques and Maintenance of Track laying and Railway stations.
- Gain an insight on the planning and site selection of Airport Planning and design.
- Analyze and design the elements for orientation of runways and passenger facility systems.
- Understand the various features in Harbours and Ports, their construction, coastal protection works and coastal Regulations to be adopted.

						M	apping	g of CC	s with	ı POs					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	3		1				3		2	3	3
CO2		3	3	3									2	3	3
CO3			3	2	2	3	3	1		3			3	2	3
CO4	2		3			3	1		1				3	2	3
CO5	3		3	2			3			3			2	3	3

CEDESCN	URBAN PLANNING & DEVELOPMENT	L	T	P	C
CEPESCN	URBAN FLANNING & DEVELOPMENT	3	0	0	3

COURSE OBJECTIVES

- To enable students to develop knowledge on Urban and rural planning.
- To introduce the regulations and laws related to urban planning.
- To educate the importance of zoning in planning.
- To get to know the principles involved in planning public buildings.

Unit-I

Objects of town planning – Economic justification – Principles of Town Planning – Necessity of Town Planning – Growth of Towns – Natural and planned growth – stages in Town Development – Distribution of Landuse – Forms of planning – Development of Town Planning in Ancient India – Concepts of Modern Town Planning and its stages.

Unit-II

Types of surveys – Collection of Data – Importance of zoning – Classification of Zoning – Use of zoning – Height zoning – Density zoning – Housing – Planning of neighborhood UNITs – Types of Layouts – Classification of housing – Housing problems in India.

Unit-III

Parks and Playgrounds – Schools – Public buildings and Town Centres – Industries – Industrial Estates – Communication and Traffic system – Traffic surveys – Traffic congestions – Types of road junctions – Parking facilities – Street lighting.

Unit-IV

Urban Renewal – Replanning of the existing towns – Objects of replanning – Necessity of Replanning – Advantages of Master plan – Data and Maps – Features of Master plan – Implementation of Master Plan

- Planning law and Legislation in India Building Bye laws Functions of Local authority Development
- Control Rules for Metropolitan and District Municipalities.

Unit-V

Concept of rural planning – Urban and Rural differences – Urbanization – Principles of Rural planning – Village redevelopment – Integral Rural development program – Rural housing – Principles – Design of Rural Housing – Rural Housing schemes – Group housing – Environmental Sanitation in Rural planning – Usage of low cost materials.

TEXT BOOKS

- 1. Rangwala. S.C., Town Planning, Charotar Publications House Pvt. Ltd., Gujarat, 26th Edition, 2013.
- 2. Thooyavan. K.R., Human Settlements A Planning Guide to Beginners, M.A. Publications, Chennai, 2005.

REFERENCES

- 1. Chennai Metropolitan Development Authority, —Second Master Plan for Chennail, Government of Tamilnadu, Chennai, 2008.
- 2. Tamilnadu Town and Country Planning Act 1971, Government of Tamilnadu, Chennai, 1971.
- 3. Goel S.L., Urban Development and Management |, Deep and Deep Publications, New Delhi, 2002.
- 4. Thooyavan, K.R., Human Settlements A Planning Guide to Beginners, M.A Publications, Chennai, 2005.

COURSE OUTCOMES

At the end of the course students will be able to

- Describe basic issues in urban planning.
- Formulate plans for Urban and rural development.
- Plan and analyze socio economic aspects of Urban and rural planning.
- Understand functions of local authority with a clear idea of control rules.
- Understand the concept of rural planning and sanitation.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3					3					2	1	2
CO2		3	2	3									2	2	2
CO3		3	3			3							2	2	2
CO4		3	2							3			2	2	2
CO5	3					3	3						2	2	2

CEDECON	OLIMATE OLIANOE ADADTATION & MITTO ATTON	L	T	P	С
CEPESCN	CLIMATE CHANGE ADAPTATION & MITIGATION	3	0	0	3

- To understand the earth's climate change and its system classification.
- To introduce the observed changes in the climate and concept of modeling and Institutional arrangements existing for monitoring this phenomenon.
- To understand Climate Change Adaptation and Mitigation Measures.

Unit-I: Earth's Climate System

Introduction – Climate in the spotlight – The Earth's Climate Machine – Climate Classification – Global wind systems – Trade Wind Systems – Trade Winds and the Hadley Cell – The Weserlies – Cloud formation and Monsoon Rains – Storms and Hurricanes – The Hydrological Cycle – Global Ocean Circulation – El Nino and its Effect – Solar Radiation – The Earth's Natural Green House Effect – Green House Gases and Global Warming – Carbon Cycle.

Unit-II: Observed Changes and Its Causes

Observation of Climate Change – Changes in pattern of temperature, precipitation and sea level rise – Observed effects of Climate Changes – Patterns of Large Scale Variability – Drivers of Climate Change – Climate Sensitivity and Feedbacks – The Montreal Protocol – UNFCCC – IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India – Climate Change modeling.

Unit-III: Impacts Of Climate Change

Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water resources – Human Health – Industry, Settlement and Society – Methods and Scenarios – Projected Impacts for different regions – Uncertainties in the Projected Impacts of Climate Change – Risk of irreversible changes.

Unit-IV: Climate Change Adaptation and Mitigation Measures

Adaptation Strategy/options in various sectors – Water – Agriculture – Infrastructure and Settlement including coastal zones. Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and practices – Energy supply – Transport – Buildings – Industry – Agriculture – Forestry – Carbon sequestration – Carbon Capture and Storage (CCS) – Waste (MSW & Biowaste, Biomedical, Industrial waste – International and Regional Co-operation.

Unit-V: Clean Technology and Energy

Clean Development Mechanism – Carbon Trading – Examples of future Clean Technology – Biodiesel – Natural Compost – ECo-friendly Plastic – Alternate Energy – Hydrogen – Bio – fuels – Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding

TEXT BOOKS

- 1. Mridula Ramesh, The climate solution, Hachette India Publisher.
- 2. Alka Sen, Global Warming and Climate Changel Academic Publication.

REFERENCES

- 1. Al core Inconvenient Truth | video form.
- 2. Dash Sushil Kumar, Climate Change An Indian Perspective, Cambridge University Press India Pvt. Ltd, 2007.
- 3. IPCC Fifth Assessment Report www.ipcc.ch
- 4. Jan C. van Dam, Impacts of Climate Change and Climate Variability on Hydrological Regimes, Cambridge University Press, 2003.

COURSE OUTCOMES

At the end of the course students will be able to

- Understand the earth's climate change and its system classification.
- Introduce the observed changes in the climate and concept of modeling and Institutional arrangements existing for monitoring the phenomenon.
- Show the impact of climate change on various sectors and its irreversibility.
- Prepare the adaptation and mitigation measures of climate change on various sectors.
- Choose the clean Technology for the Fuel and energy through natural and eco friendly techniques.

						M	appin	g of CC	Os with	1 Pos					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	3										1	2	3
CO2		1	2	3									1	2	3
CO3			2	3									1	2	3
CO4				1	2	3							1	2	3
CO5					1	2	3						1	2	3

CEPE SCN	SURFACE & GROUNDWATER	L	Т	P
	HYDROLOGY	3	0	0

OBJECTIVES

- To introduce the student to principles of Hydrologic cycle and precipitation.
- To understand the observation and estimation of Rainfall andRunoff.
- To impart knowledge on characteristics of aquifers and well hydraulics.
- To expose students to investigation, RWH and artificial recharge of groundwater

UNIT I

Introduction - Hydrologic cycle - The Global water budget- Scope and applications of hydrology - Hydrometeorology - Constituents and Structure of atmosphere - The General circulation - Meteorological observations - Climate and weather seasons of India- Precipitation - Formation - Forms - Types - Measurement - Optimum Rain Gauge Network - Analysis and Interpretation of Rainfall Data - Rainfall Intensity - Rainfall Hyetograph - Average Depth of Precipitation - Estimation of Missing Rainfall Data

UNIT II

Hydrologic Abstractions – Evaporation - Factors Affecting – Measurement – Estimation - Reducing Evaporation – Evapotranspiration - Methods of Estimation - Penman Method – Infiltration - Factors Influencing – Measurement – Equations - Infiltration Indices - Effective Rainfall

UNITIII

Runoff – Components - Factors Influencing - Catchment Characterisation - Stream Order and Drainage Density - Basin Yield - Rainfall - Runoff Relationship - Strange Tables and Curves-

Flow Duration Curve-Flow Mass Curve-Stream Flow Measurement-Stage-Discharg

Relationship - Velocity Distribution - Stream Gauge Site Selection - Hydrograph - Introduction to UnitHydrograph

UNIT IV

Groundwater in Hydrologic cycle – vertical distribution of groundwater – rock properties affecting ground water - types of aquifers- water level fluctuations – Groundwater in India Storage coefficient- specific yield – Darcy's law– coefficient of permeability – laboratory measurement of permeability – field measurement of permeability – general flow equation – steady unidirectional flow – steady radial flow to a well both in confined and unconfined aquifer – steady flow with uniform recharge.

UNIT V

Construction of wells – constructing shallow wells and drilling deep wells – well completion. Surface and sub – surface investigations of ground water – geophysical exploration – electrical methods – seismic refractions methods – subsurface investigation –test drilling and resistivity-Artificial recharge of groundwater – Rainwater Harvesting- sea water intrusion

TEXT BOOKS

- 1. Jayarami Reddy, "Hydrology", Tata McGraw Hill, 2008.
- 2. David Keith Todd, "Groundwater Hydrology", John Wiley and Sons, 2000.
- 3. S.P. Garg, "Groundwater and Tube Wells", Oxford & IBH Publishing Co.,1993

REFERENCE BOOKS:

- 1. Chow, V.T. and Maidment D.R., "Hydrology for Engineers", McGraw-Hill Inc., Ltd., 2000
- 2. R.Subramanya, "Engineering hydrology"- New age international, 2005
- 3. Raghunath H.M., "Ground Water Hydrology", New Age International (P) Limited, New Delhi,2010
- 4. Walton C., "Groundwater Resource Evaluation", McGraw-Hill Publications, 2000.
- 5. Fitts R Charles, "Groundwater Science", Elsevier Academic Press, 2002.
- 6. Ramakrishnan S., "Groundwater", K.J. Graph arts, Chennai, 1998.

COURSE OUTCOMES:

At the end of the course students will be able to

- 1. Understand Hydrologic cycle and precipitation.
- 2. Realize the importance of hydrologic abstractions and their estimation
- 3. Comprehend the Rainfall-Runoff relationship and stream flow.
- 4. Understand aquifer properties and its dynamics.
- 5. Acquire knowledge of well construction and the importance of artificial recharge of groundwater.

			MA	PPING	PROC	RAME	EE OU'	ГСОМЕ	es wit	'H COU	RSE OU	TCOME	es		
Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	P SO1	PSO2	PSO3
CO1	3	3	3	2	-	2	2	2	-	-	-	2			
CO2	3	2	3	2	-	2	2	2	1	_	-	2			
CO3	2	2	2	2	-	2	2	-	2	-	-	2			
CO4	3	3	3	2	2	2	2	-	2	_	-	2			
CO5	3	2	3	2	2	3	3	2	2	-	1	2			

OPEN ELECTIVES

CEOESCN	AIR POLLUTION MONITORING & CONTROL	L	T	P	C
CEOESCN	AIR POLLUTION MONITORING & CONTROL	3	0	0	3

COURSE OBJECIVES

- To impart knowledge on air quality measurement in compliance with the standards.
- To enable students to learn about various air pollution control systems, related theory, working principles, engineering design and management.
- To impart knowledge on the principles and design of control of indoor / particulate / gaseous air pollutant and its emerging trends
- Composition and structure of atmosphere Definition Air Pollution Sources
 Classification Types On meteorological conditions Ozone layer disturbance, green house effects.

Unit-I: Introduction

Standards – ambient air quality standards – emission standards – Air sampling methods – Modern air pollution measurement sensors – working principle – Emission inventory – Air quality index – Measurement – ambient and source sampling – pressure – gas flow rate – relative humidity – Sample train – determination particle size distribution – Gas stream calculations and conditioning.

Unit-II: Air Pollution Control

General – Gravitational settling chambers – Inertial separators – Cyclone – introduction – industrial application – multiple cyclone – Fabric filtration – introduction – principle and theory – application – engineering design – operation. *Electrostatic precipitation* – introduction – principles of operation – design methodology and considerations – application – problems and corrections – Dry and wet Scrubbing – introduction – dry scrubbers – wet scrubbers.

Unit-III: Condensation

Introduction – pre and post treatment – engineering consideration and design – management .Flare process – introduction – pretreatment – engineering consideration and design – management. *Thermal and Catalytic oxidation* – introduction – pretreatment and engineering consideration – supplementary fuel requirements – design and operation – management. Gas – phase activated carbon adsorption – introduction and definitions – adsorption theory – carbon adsorption pretreatment – design and operation.

Unit-IV: Gas Phase Bio-filtration

Introduction – types of air treatment systems – operational consideration – design consideration/parameters – case studies – process control and monitoring – limitations of the technology. Emerging air Pollution Control Technologies – introduction – process modification – vehicle air pollution and its control – mechanical particulate collectors – Entrainment separation – IC engines – Membrane process – UV photolysis – High efficiency particulate air filters – Technical and economical feasibility of selected emerging technologies.

Unit-V: Indoor Air Quality Management

Measurement, control and preventive measures of indoor air quality measures and management. Control Measures for Industrial Applications: Control methods – Processes based control mechanisms – mineral products – asphaltic concrete, cement plants and glass manufacturing plants; Thermal power plants, Petroleum refining and storage plants, Fertilizers, Pharmaceuticals and wood processing industry.

TEXT BOOKS

- 1. Anjaneyulu Y., Air Pollution & Control Technologies, Allied Publishers(P) Ltd., India, 2002.
- 2. David H.F. Liu, Bela G. Liptak, Air Pollution, Lweis Publishers, 2000.

REFERENCES

- 1. Lawrence K.Wang, Norman C.Pereira and Yung Tse Hung, Air Pollution Control Engineering, Humana Press, New Jersey, 2004.
- 2. Noel De Nevers, Air Pollution Control Engineering, McGraw Hill International Edition, Civil Engineering Series, Singapore, 2000.
- 3. Arthur C. Stern, Air Pollution, Volume III, Academic Press, New Delhi, 2006.
- 4. Wayne T. Davis, Air Pollution Engineering Manual, John Wiley & Sons Inc., New Delhi, 2000.
- 5. J.R.Mudakavi, Principles and Practices of Air Pollution Control and Analysis, I.K.International Publishing House Pvt. Ltd., New Delhi, 2012.
- 6. Louis Theodore, Air Pollution Control Equipment Calculation, John Wiley & Sons Inc, New Delhi, 2006.
- 7. Programme Objective Series (PROBES), Open Source of Central Pollution Control Board, Ministry of Environment, Forest and Climate Change, Govt. of India (www.cpcb.nic.in).

COURSE OUTCOMES

At the end of the course students will be able to

- Conduct air quality monitoring programme for routine or site specific air quality parameters with conventional as well as modern sensors.
- Design air pollution control systems.
- Select the appropriate cost effective control system with high efficiency to be adopted in any type of air polluting industry.
- Gain the knowledge on air pollution control techniques.
- Understand the indoor air quality management system.

							Mapp	ing o	f COs	with F	POs				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1			2		3							1	2	3
CO ₂	1		2		3								2	3	1
CO3			1		2	3							3	2	1
CO4			1		2	3							2	3	1
CO ₅			1		2	3							1	2	3

CEOESCN	MUNICIPAL SOLIDWASTE MANAGEMENT	L	T	P	С
CECESCN	MUNICIPAL SOLIDWASTE MANAGEMENT	3	0	0	3

- To gain an insight regarding sources, characteristics and composition of solid waste.
- To understand the rate of generation of solid waste and its present status in india.
- To know the method of collection, transfer, and transport of municipal solid waste.
- To Understand the role and applicability of physical, chemical, thermal and biological processing techniques.
- To acquire substantial knowledge in the field of resource recovery, waste to energy and on composting facility.

Unit-I

Introduction – goals and objectives of solid waste management – social aspects – legal aspects health factors – generation of solid wastes – sampling – characterization – method of disposal as a factor dependent upon the quality of refuse.

Unit-II

Storage system – dust bins at the streets – collection facility – frequency of collection – method of transport – transfer stations – types – design requirements.

Volume reduction – methods – compaction and balling – grinding of garbage – disposal methods.

Incinerators – design and operation – dust and air pollution problems – use – cost considerations.

Unit-III

Sanitary land fill – methods – machineries involved – site selection – Geoenvironmental investigations – Design and operation – liners and covers – phases of waste digestion – leachate control and treatment, gas recovery and control, landfill post closure monitoring – cost consideration – environmental factors such as odours, flies and vectors and leachate and groundwater pollution.

Unit-IV

Recovery and Reuse – ocean disposal – impact assessment – precautions required for the operation of the project – cost considerations.

Unit-V

Composting – types – methods – factors influencing composting – recommended procedures – impact assessment – cost consideration – disposal of industrial solid waste and hazardous refuse – – types – sources – characteristics – precautions needs – treatment and disposal.

TEXT BOOKS

- 1. George Tchobanoglous, Hilary Theisen and Samuel A, Vigil, Integrated Solid Waste Management, McGraw Hill, New York, 1993.
- 2. CPHEEO, Manual on Municipal Solid waste management, Central Public Health and Environmental Engineering Organization, Government of India, New Delhi, 2000.

REFERENCES

- 1. Handbook of Solid Waste Management by Frank Kreith, George Tchobanoglous McGraw Hill Publication.
- 2. Solid Waste Management Haggerty, D.J., Von Nostrand Renihold company, New York, 1973.
- 3. Municipal Refuse Disposal NY American Public Works Association, 1966.
- 4. Refuse Collection Practice by American Public Works Association, 1967.
- 5. Management of Solid Wastes in Developing Countries Flintoff, F., WHO Publication, 1972.

COURSE OUTCOMES

At the end of the course students will be able to

- Apply the procedures and methods for MSW Collection, segregation, processing and disposal
- Develop an Environmental Management System.
- Explain different methodologies for Environmentally sound solutions
- Examine the process by which legal systems are adopted and enforced.
- Gain a knowledge on composting methods of municipal solid waste.

										with I					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		3	3	3		2	3	2	3	2			3		3
CO2	3		2	3	2		2		2					2	
CO3	2		3		2	2	3	2					2		3
CO4	3					2			3				2		3
CO5	3		2	3				3	2				3		2

CEOESCN	ECONOMICS & FINANCE FOR CIVIL	L	T	P	C
CECESCN	ENGINEERING	3	0	0	3

COURSE OBJECTIVES

- Prepare students to take advanced courses in systems engineering, financial engineering and managerial accounting.
- Prepare students to become financially conversant in their professional careers and personal lives
- To learn the basics of economics, finance and accounting necessary for a Civil Engineering enterprise to be successful and profitable.

Unit-I

Economics - Role of Civil Engineering in Industrial development - Support matters of economy as related to engineering - Market demand & supply - Choice of technology Quality control and production - Audit in economic law of returns governing production.

Unit-II

Land and construction economics – Urban land use and values – Construction development in housing, transport and other infrastructures – Economics of ecology,

environment, energy resources, local material selection, form and functional designs – Construction workers – Urban problems – Poverty – Migration – Unemployment – Pollution.

Unit-III

Financing – Need for financial management – Types of financing – Short – term and Long term borrowing – Leasing – Equity financing – Internal generation of funds – External commercial borrowings – Assistance from government – International financial corporations .

Analysis of financial statements – Balance sheet – Profit and loss account – Funds flow statement – Ratio analysis – Investment and Financing decision – Financial control – Job control – Centralized management.

Unit-IV

Accounting method - General - Cash basis of accounting - Accrual basis of accounting

Percentage completion method – Completed contract method – Accounting for tax reporting purposes and financial reporting purposes.

Unit-V

Cost estimating of Civil Engineering equipment – Depreciation and Interest – Maintenance and Repair costs – Degree of utilization – equivalent annual cost – operating cost standards – exercises. Project Benefit Cost analysis – least cost – Net Present Value (NPV) – equivalent annual cost method – Internal Rate of Return method (IRR) – Benefit – Cost Ratio – exercises.

TEXT BOOKS

- 1. Joy, P.K., Total Project Management The Indian context.
- 2. Tenah K.A. & J.M.Guevara, Fundamentals of Construction Management and Organisation.

REFERENCES

- 1. Warner Z Hirsch, Urban Economics, Telford Publishers, London, UK, 1997.
- 2. Mitchel, Robert L., Engineering Economics, John Wiley & Sons, UK, 1980.
- 3. Alan A.Smith, Ernest Hinton and Roland W. Lewis, Civil Engineering Systems Analysis and Design, John Wiley and Sons, UK, 1983.
- 4. Charles S. Revelle, E.Earl Whitlach and Jeff.R.Wright, Civil and Environmental Systems Engineering, Pearson Prentice Hall Inc., New Jersey, USA, 2004.

COURSE OUTCOMES

At the end of the course students will be able to

- Perceive the power of economics techniques and finance.
- Demonstrate the applications of these techniques to problems drawn from industry, management and other engineering fields.
- Apply cost estimation methods to get close approximate solutions to complex Engineering problems.
- Understand the financial concept and analysis.
- Perceive a knowledge on accounting methods applied in Civil Engineering.

							Марр	ing o	f COs	with I	Pos				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		3	2		3		3			2				
CO ₂				3	2		2		3	2	3	3			
CO3	3														
CO4		2		3			3		2		3				
CO5					3						3				

CEOESCN	ENVIRONMENTAL IMPACT ASSESSMENT	L	T	P	C
CECESCI	ENVIRONMENTAL IMPACT ASSESSMENT	3	0	0	3

- To understand the evolution, role, application and the general procedure for EIA
- To impart the concept of Environmental Management Systems (EMS).
- To impart/inculcate the knowledge of Environmental Auditing, Life cycle Assessment (LCA).
- To introduce the concept and role of Cleaner Production, Sustainable Development and ISO 14000 series.
- To understand the rules and regulations governing EIA and EIA case studies.

Unit-I

Evolution of EIA – Concepts – Methodologies – Screening – Scoping – Base line Studies – mitigation – Matrices – Checklist.

Unit-I

Rapid EIA – Comprehensive EIA – Legislative and Environmental Clearance procedure in India – prediction tools for EIA.

Unit-III

Assessment of Impact on Air – Soil – Water – Noise – Biological – Socio – Cultural Environment. Public participation – Resettlement and Rehabilitation procedures – Sustainable Development.

Unit-IV

Documentation of EIA - EMP - Post project Monitoring - EIA case studies.

Environmental Auditing – Various types of Audit – Philosophy – concepts – rules and relevant methodologies.

Unit-V

Concept of Cleaner production – Role of ISO and ISO 14000 in Environmental Management.

TEXT BOOKS

1. Canter R.L., Environmental Impact Assessment, McGraw Hill Inc., New Delhi, 1997.

2. Anjaneyalu Y., Environmental Impact Assessment Methodologies, B.S. Publications, Hyderabad, 2002.

REFERENCES

- 1. Lohani B., Evans J.W., Ludwig H., Everitt R.R., Richard A. Carpenter and Tu S.L., Environmental Impact Assessment for Developing countries in Asia, Volume 1 Overview, Asian Development Bank, 1997.
- 2. Peter Morris and Riki Therivel, Methods of Environmental Impact Assessment, Routledge Publishers, 2009.
- 3. Barry Sadler and Mary McCabe, Environmental Impact Assessment Training Resource Manuall, UNITed Nations Environment Programme, 2002.
- 4. Judith Petts, Handbook of Environmental Impact Assessment Volume I and II, Blackwell Science, New York, 1999.
- 5. Ministry of Environment and Forests, EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010.
- 6. The World Bank, Environmental Impact Assessment Source book, Volume I, II and III, Washington D.C., 2011.

COURSE OUTCOMES

At the end of the course students will be able to

- Apply the main procedures and methods which are adopted at different stages in EIA process.
- Develop on Environmental Management Systems.
- Explain different methodologies for Environmental Impact prediction and assessment.
- Evaluate EIA reports
- Examine the process by which legal systems are adopted and enforced.

	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2												
CO ₂		3	2	3		3			2		3				
CO3			3			2		2				3			
CO4					2	3	2	1		1					
CO5	2									2	3				

CEOESCN	COASTAL ENGINEERING	L	T	P	С
CEOESCN	COASTAL ENGINEERING	3	0	0	3

- To develop an understanding of basic concepts in coastal engineering such as the linear wave theory, energy propagation in waves, shoaling, refraction, diffraction, and breaking.
- To help the student develop an intuitive feeling about design concepts in coastal engineering based on wave spectra, prediction of waves in fetch limited seas, wave forces on piles and wall type structures.
- The students to the diverse topics as wave mechanics, wave climate, shoreline protection methods and laboratory investigations using model studies.

Unit-I

Indian Scenario – Classification of Harbours. Introduction – wind and waves – Sea and Swell – Introduction to small amplitude wave theory – use of wave tables – Mechanics of water waves – Linear (Airy) wave theory, Introduction to Tsunami.

Unit-II

Behaviour of waves in shallow waters, Introduction to non – linear waves and their properties – Waves in shallow waters – Wave Refraction, Diffraction and Shoaling – Hindcast wave generation models, wave shoaling; wave refraction; wave breaking; wave diffraction random and 3D waves – Short term wave analysis – wave spectra and its utilities – Long term wave analysis – Statistics analysis of grouped wave data.

Unit-III

Dynamic beach profile; cross – shore transport; along shore transport (Littoral transport), sediment movement.

IINIT_IV

Field measurement; models, groins, sea walls, offshore breakwaters, artificial nourishment – planning of coast protection works – Design of shore defense structures.

UNIT-V

Physical modeling in Coastal Engineering – Limitations and advantages – Role of physical modeling in coastal engineering – Numerical modeling – Modeling aspects – limitations – Tsunami mitigation measures.

TEXT BOOKS

- 1. Coastal Engineering Process, theory and design practices. Dominic Reeve, Andrew Chadwick and Chris Fleming, CRC Press.
- 2. Basic Coastal Engineering. Robert M. Sorensen, 2nd Edition, Springer Publisher.

REFERENCES

- 1. Mani J.S., Coastal Hydrodynamics. PHI Pvt. Ltd. New Delhi 2012.
- 2. Dean, R.G. and Dalrymple, R.A., Water wave mechanics for Engineers and Scientists, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1994.
- 3. Ippen, A.T., Estuary and Coastline Hydrodynamics, McGraw Hill, Inc., New York, 1978
- 4. Sorenson, R.M., Basic Coastal Engineering, A Wiley Interscience Pub. New York, 1978.

5. Coastal Engineering Manual, Vol. I – VI, Coastal Engineering Research Centre, Dept. of the Army, US Army Corps of Engineers, Washington DC, 2006.

COURSE OUTCOMES

The students will be able to

- Understand coastal engineering aspects of harbors methods to improve navigation
- Understand the wave properties and analysis of wave.
- Understand the concepts of sediment transport.
- Design of shore defense structures.
- Gain knowledge in modeling in coastal engineering.

							Mapp	ing o	f COs	with I	POs				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	2			2	1	2					2	1	3
CO ₂	3	2	2	3			1						2	1	3
CO3	3	2	2				1						2	1	3
CO4	2	2	2	2			1	2					2	1	3
CO ₅		3	2	3			2	2				2	2	1	3

CEOESCN	TOTAL QUALITY MANAGEMENT	L	T	P	C	
CEOESCN	TOTAL QUALITY MANAGEMENT	3	0	0	3	

COURSE OBJECTIVES

- To evaluate the principles of quality management and to explain how these principles can be applied within quality management systems.
- To appraise the organizational, communication and teamwork requirements for effective quality management.
- Critically analyse the strategic issues in quality management, including current issues and developments and to devise and evaluate quality implementation plans.

Unit-I

Introduction – Need for quality – Evolution of quality – Definitions of quality – Dimensions of product and service quality – Basic concepts of TQM – TQM Framework – Contributions of Deming, Juran and Crosby – Barriers to TQM – Customer focus – Customer orientation, Customer satisfaction, Customer complaints, Customer retention.

Unit-II

Leadership – Quality Statements, Strategic quality planning, Quality Councils – Employee involvement – Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal – Continuous process improvement – PDCA cycle, 5S, Kaizen – Supplier partnership – Partnering, Supplier selection, Supplier Rating.

Unit-III

The seven traditional tools of quality – New management tools – Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT – Bench marking – Reason to bench mark, Bench marking process – FMEA – Stages, Types.

Unit-IV

Quality Circles – Cost of Quality – Quality Function Deployment (QFD) – Taguchi quality loss function – TPM – Concepts, improvement needs – Performance measures.

Unit_V

Introduction—Benefits of ISO Registration—ISO 9000 Series of Standards—Sector – Specific Standards—AS 9100, TS16949 and TL 9000 – ISO 9001 Requirements — Implementation—Documentation—Internal Audits—Registration – Environmental management System: Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001—Benefits of EMS.

TEXT BOOKS

- 1. Dale H.Besterfiled, Carol B.Michna, Glen H. Besterfield, Mary B.Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe, Total Quality Management, Pearson Education.
- 2. Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.
- 3. Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

REFERENCES

- 1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.
- 2. Suganthi L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 3. ISO9001 2015 standards
- 4. Dale H. Besterfield et al., Total Quality Management, Third edition, Pearson Education (First Indian Reprints 2004).

COURSE OUTCOMES

The student would be able to

- Apply the tools and techniques of quality management.
- Gather a leadership quality and strategic planning and management.
- Apply manufacturing and services processes in quality management.
- Understand the quality measuring techniques.
- know the ISO certification process and internal auditing system.

							Mapp	ing o	f COs	with F	POs				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1		2	2			3	2		2		1	3	1	2
CO2	1		1		3		1				2	3	3	2	2
CO3	3	3	2				3			3			3	1	2
CO4		2		1	2	3		1	1	1			3	2	2
CO5	2			2			1				2		3	2	2

CEOESCN	COMPUTER AIDED DESIGN OF STRUCTURES	L	T	P	С
CEOESCN	COMPUTER AIDED DESIGN OF STRUCTURES	3	0	0	3

- To understand the need and concepts of design optimization.
- To introduce the students about computer graphics, structural analysis, design and optimization and expert systems, applications in analysis.
- To use conventional and modern optimization methods in structural applications.

Unit-I

Fundamental reason for implementing CAD – Software requirements – Hardware components in CAD system – Design process – Applications and benefits.

Unit-II

Graphic Software – Graphic primitives – Transformations – 2 Dimensional and 3 Dimensional transformations – Concatenation – Wire frame modeling – Solid modeling – Graphic standards – Drafting packages .

Unit-III

Principles of structural analysis – Fundamentals of finite element analysis – Concepts of finite elements – Stiffness matrix formulation – Variational Method – Weighted residual method – Problems – Convergence criteria – Analysis packages and applications.

Unit-IV

Principles of design of steel and RC structures – Beams and Columns – Applications to simple design problems – Optimization techniques – Algorithms – Linear programming – Simplex Method

Unit-V

Introduction to artificial intelligence – Knowledge based expert systems – Applications of Knowledge Based Expert Systems – Rules and decision tables – Inference mechanisms – simple applications

TEXTBOOKS

- 1. Groover M.P. and Zimmers E.W. Jr., CAD/CAM, Computer Aided Design and Manufacturing, Prentice Hall of India Ltd, New Delhi, 1993.
- 2. Krishnamoorthy C.S.Rajeev S., Computer Aided Design^I, Narosa Publishing House, New Delhi, 2001

REFERENCES

- 1. Harrison H.B., Structural Analysis and Design^{||}, Part I and II Pergamon Press, Oxford,1990.
- 2. Rao S.S., Optimisation Theory and Applications^{||}, Wiley Eastern Limited, New Delhi, 1984.
- 3. Richard Forsyth (Ed), Expert System Principles and Case Studies, Chapman and Hall, London, 1989.

4. Anupam Saxena Computer Aided Engineering Design. Anamaya Publishers, New Delhi, India, 2005.

COURSE OUTCOMES

On successful completion of this course, students will be able to:

- Understand the concepts of Computer Aided Design, Software requirements and Hardware components in CAD system.
- Acquire the knowledge in Computer Graphics and Computer aided drafting using Auto CAD software.
- Understand the fundamentals of finite element analysis and be able use software for modeling, analysis and design of structures.
- Understand the concepts of Optimization techniques and its practical applications to structural engineering.
- Acquire the knowledge in Artificial Intelligence and Knowledge based expert systems.

							Mapp	ing o	f COs	with F	POs				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			3	2			3			2					
CO ₂					2						2	3			
CO3	2	3	3				2			2					
CO4		2				2			1						
CO5	2			3							1				

HONOR ELECTIVES

CEHESCN	SPECIAL CONCRETE STRUCTURES	L	T	P	С
CEHESCN	SPECIAL CONCRETE STRUCTURES	4	0	0	4

COURSE OBJECTIVES

- To expose the students to the design practices of complicated RCC structures like Deep beams, R.C.poles, storage containers and elevated water tanks.
- To understand the significance of various code specifications in design of special concrete structures.
- To introduce the different types of philosophies related to design of special concrete structures.

Unit-I

Analysis and Design of Building frames – Analysis for vertical and horizontal loads – Method of substitute frames – Portal method – Cantilever method – Factor method. Design of portal frames with vertical loads – Design of gable frames with vertical loads – Design of deep beams using strut and tie concept – Design of Concrete Corbels for crane loads – Design of Grid floors – Detailing of reinforcement as per relevant standards.

Unit-II

Design of Concrete Poles as per IS 785: 1965 – Design of Concrete Hume Pipes as per IS 458:1971 – Design of R.C. Chimneys as per IS 4998 (Part I): 1992-Design of Portal frames as per SP 43: 1987 – Detailing of reinforcement as per relevant standards.

Unit-III

Design of Concrete Bunkers as per IS 4995 (Part I,II): 1974 – Design of Concrete Silos as per IS 5503 (Part I):1969 – Detailing of reinforcement as per relevant standards.

Unit-IV

Design of Elevated Concrete water tanks – Circular tanks – Rectangular tanks – Intze type tanks – Design of stagging – Design of Underground Rectangular and Circular Water tanks – Design of Domes – Detailing of reinforcement as per IS 11992: 1995, IS 3370 (Part IV): 1967 and IS 3370 (Part I): 2009.

Unit-V

Design of Bridge deck Slab – I.R.C.loadings – Design of solid slab bridges – Pigeaud's curves – General design requirements as per IRC: 6 – 2014 and IRC 21: 2000.

TEXT BOOKS

- 1. Krishnaraju N., Advanced R.C.Design, CBS Publishers & Distributors Pvt. Ltd., 2012.
- 2. Punmia B.C., Ashok Kumar Jain and Arun Kumar Jain, R.C.Structures Vol. I & III, Laxmi Publications (P) Ltd., 1992.

REFERENCES

- 1. Mallick S.K. & Gupta, A.P., Reinforced Concrete, Oxford I B H, 1987.
- 2. Park and Paulay, T., R.C.StructuresTata McGraw Hill Publications, 1975.
- 3. Ramamrutham, S. and Narayan, R., Design of R.C. Structures, Dhanpat Rai and Sons, 1992.
- 4. Dayaratnam, P., Design of RC Structures, Oxford & IBH Publishing Co., 2000.
- 5. Punmia, B.C., R.C.Structures Vol. II, Standard Publishers, 1991.

STANDARDS

- 1. IS 456: 2000, Code of Practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi.
- 2. IS 13920: 1993, Ductile Detailing of Reinforced Concrete structures subjected to Seismic Forces Code of Practice.
- 3. SP 34: 1987, Handbook on Concrete Reinforcement and Detailing.
- 4. IRC: 6 2014, Standard Specifications and Code of Practice for Road Bridges Section: (Loads And Stresses).
- 5. IRC 21: 2000, Standard Specifications and Code of Practice for Road Bridges Section: [Cement Concrete (Plain And Reinforced)].
- 6. IS 1343:1980, Code of Practice for Pre stressed Concrete, Bureau of Indian Standards, New Delhi, 2012.
- 7. IS 2974 (Part I):1982, Code of Practice for Design and Construction of Machine Foundations (Foundation for Reciprocating Type Machines).
- 8. IS 2974 (Part II):1980, Code of Practice for Design and Construction of Machine Foundations [Foundations for Impact Type Machines (Hammer Foundations)].
- 9. IS 2974 (Part III): 1992, Design and Construction of Machine Foundations Code of Practice [Foundations for Rotary Type Machines (Medium and High Frequency)].
- 10. IS 2974 (Part IV):1979, Code of Practice for Design and Construction of Machine Foundations (Foundations for Rotary Type Machines of Low Frequency).
- 11. IS 4995 (Part I): 1974, Criteria for Design of Reinforced Concrete Bins for the Storage of Granular and Powdery Materials (General Requirements and Assessment of Bin Loads).
- 12. IS 4995 (Part II):1974, Criteria for Design of Reinforced Concrete Bins for Storage of Granular and Powdery Materials (Design Criteria).
- 13. IS 9178 (Part II):1979, Criteria for Design of Steel Bins for Storage of Bulk Materials (Design Criteria).
- 14. IS 5503 (Part I) :1969, General Requirements for Silos for grain storage (Construction requirements)
- 15. IS 4998 (Part I): 1992, Criteria for Design of Reinforced (Assessment of Loads).
- 16. IS 3370 (Part IV): 1967, Code Of Practice for Concrete Structures for the Storage of Liquids.
- 17. IS 11992: 1995, Criteria for Design Of RCC Staging For Overhead Water Tanks.
- 18. IS 3370 (PART I): 2009, Concrete Structures for Storage of Liquids Code of Practice.
- 19. IRC: 6 2014, Standard Specifications and Code of Practice for Road Bridges Section: (Loads And Stresses).
- 20. IRC 21: 2000, Standard Specifications and Code of Practice for Road Bridges Section [Cement Concrete (Plain And Reinforced)].

COURSE OUTCOMES

At the end of this course the student will be able to

- Develop basic knowledge about various complicated structural elements.
- Get knowledge on the concepts of R C pipes and chimneys.
- Gain adequate familiarity in the design of Bunkers and silos.
- Understand the design of tanks with relevant to standard specifications.
- Analyze with standard specification the concepts of bridge slabs.

							Марр	ing o	f COs	with F	POs				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3			1					1				
CO2		1	3			2					1				
CO3		1	3			2					1	2			
CO4		1	3			2					1				
CO5		1	3			2					1				

CEHESCN	EARTH QUAKE ENGINEERING	L	T	P	C
CERESCN	EARTH QUARE ENGINEERING	3	0	0	3

- To provide a coherent development to the students for the courses in sector of earthquake engineering.
- To involve the application of scientific and technological principles of planning, analysis, design of buildings according to earthquake design philosophy.
- To understand that these loadings will enable design engineers to ensure the safety and serviceability of structures.

Unit-I

Elements of Earth, core, mantle and crust – Engineering Seismology, Plate tectonic theory, originations of earthquake – Volcanic and tectonic origins, Faults, Dips, slips in crust, seismic zoning map of India & its use.

Earthquake Effects: Land and rock slides, Liquefaction, Fires, Tsunamis, Floods, Release of poisonous gases and Radiation.

Earthquake Phenomenon: – Focus epicentre, Seismic waves, Magnitude, intensity, Ritcher scale, MM scale, Earthquake recording instruments, and Seismic resistant design guidelines

Unit-II

Dynamics: Vibration, frequency, D'Alembert's Principle, Dynamic equilibrium equation, inertial force, Damping force, Stiffness force, Mathematical models, and Discrete (lumped parameter) systems: SDOF, MDOF systems, Continuous systems, Formulations of equations of motions for two and three storey building. Free vibration analysis of SDOF systems with and without viscous damping, Experimental methods of assessing viscous damping present in the dynamic systems: logarithmic decrement method, Half power band width method, and simple problems.

Unit-III

Forced Vibration Analysis (Harmonic loading) of Single Degree of freedom systems with and without damping under harmonic excitations, Forced vibration response to harmonic base excitation. Formulation of Response Spectrum, Design Response

spectrum as per IS:1893, simple problems using the above response spectrums. Forced vibration analysis of multi Degrees of freedom systems (restricted to two degrees of freedom only) using modal superposition technique.

Unit-IV

Analysis of building frames, Equivalent static method as per IS: 1893-Dynamic analysis using mode superposition concept – Push over analysis. Modelling of Building Frames with Brick and Concrete Walls – Centre of Mass locations – Centre of Stiffness locations – Orientation of Shear walls.

Unit-V

Philosophy and Principles of Earthquake Resistant design – Strength and Stiffness, Ductility Design and Detailing (15:13920), Concept of Energy Absorbing Devices, Concepts of Seismic Base isolation technique and Seismic Active control methods. Lessons learnt from the Past Earthquakes – Case studies of important Indian Earthquakes, Major world Earthquakes.

TEXT BOOKS

- 1. Dowrick, D.J., Earthquake Resistant Design^{||}, John Wiley & Sons, Winchester, U.K., 1977.
- 2. Paulay, T. and Priestley, M.J.N., Seismic Design of Reinforced and Masonry Buildings, John Wiley & Sons, Inc., New York, 1992.

REFERENCES

- 1. Anil K. Chopra, Dynamics of Structures, McGraw Hill International Edition, 1998.
- 2. Clough, R.W. and Penzien, J., Dynamics of Structures, Second Edition, McGraw Hill International Edition, 1993.
- 3. Kiyoshi Muto, Earthquake Resistant Design of Tall Buildings in Japan^{||}, University of California, 1973.
- 4. Beskos. D.E., Computer Analysis & Design of Earthquake Resistant Structures A Handbook of Advances in Earthquake Engineering, Computational Mechanics Inc, 1997.
- 5. Hiroshi Akiyama, Earthquake Resistant Limit State Design for Buildings I, University of Tokyo Press, 1985.
- 6. Paz, M. and Leigh W., Structural Dynamics Theory & Computations I, 4th Edition,
- 7. CBS Publishers & Distributors, New Delhi, 2006.

LIST OF CODES

- 1. IS 1893: 2002 Criteria for Earthquake Design of Structures, Bureau of Indian Standards, New Delhi.
- 2. IS 4236: 1976 Code of Practice for Earthquake Resistant Design and Construction of Buildings, Bureau of Indian Standards, New Delhi.
- 3. IS 13920: 1993 Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces Code of Practice, Bureau of Indian Standards, New Delhi.
- 4. Explanatory Handbook on Codes for Earthquake Engineering, Special Publication SP 22, Bureau of Indian Standards, New Delhi.

- 5. IS 13827: 1993, Indian Standard Guidelines for Improving Earthquake Resistance of Earthen Buildings.
- 6. IS 13828: 1993, Indian Standard Guidelines for Improving Earthquake Resistance of Low Strength Masonry Buildings.
- 7. IS 13935: 1993, Indian Standard Guidelines for Repair and Seismic Strengthening of Buildings.
- 8. IS 456: 2000, Explanatory Handbook on Indian Standard Code of Practice for Plain and
- 9. Reinforced Concrete, Special Publication SP: 24, Bureau of Indian Standards, New Delhi.

COURSE OUTCOMES

At the end of this course the student will be able to

- Understand the basicconcepts about the basics, effects and phenomenon of earthquake.
- Acquire adequate knowledge on the dynamics of earthquake.
- Understand and analyze the concept of forced vibrations and its response.
- Apply skills in the design and modelling of various building frames.
- Develop information on the concept and principles of earthquake resistant design and energy absorbing devices.

							Марр	ing o	f COs	with F	POs				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3						2								
CO2	1	1	2	3	2										
СОЗ	1	3	1	2											
CO4	1	1	3	2				1			2				
CO5	1	1						1			2	3			

CEHESCN	ADVANCED WATER TREATMENT	L	T	P	С
CEHESCN	ADVANCED WATER TREATMENT	3	0	0	3

- To realize the principle and concept of physiCo-chemical treatment.
- To understand the concept of conventional water treatment system.
- To design the advanced water treatment system.

Unit-I: Physical Treatment Priniciples

Principles of screening – mixing, equalizations – sedimentation – filtration – modeling – backwashing – evaporation – incineration – gas transfer – mass transfer coefficients. Adsorption – isotherms – principles, equilibrates and kinetics, reactors, regeneration, membrane separation, reverse osmosis, nano filtration ultra filtration and hyper filtration – electro dialysis, distillation – stripping and crystallization – recent advances.

Unit-II: Chemical Treatment Principles

Principles of chemical treatment – coagulation flocculation – precipitation – floatation, solidification and stabilization – disinfection .ion exchange, electrolytic methods – Solvent extraction – advanced oxidation / reduction – recent advances.

Unit-III: Water Treatment

UNIT operations and processes – Principles, functions design and drawing of Chemical feeding, Flash mixers, flocculators, sedimentation tanks and sand filters – Disinfection – Residue Management – Construction and Operation & Maintenance aspects of Water Treatment Plants.

Unit-IV: Advanced Water Treatment

Principles and functions of Aeration – Iron and manganese removal, Defluoridation and demineralization – Water softening – Desalination – Membrane Systems – Recent advances.

Unit-V: Design of Conventional Treatment Plants

Selection of UNIT operation and processes – design of conventional water treatment plant UNITs – aerators – chemical feeding – flocculation – clarifier – filters – rapid sand filter, slow sand filter, pressure filter – chlorinators. Displacement and gaseous types and layouts – flowcharts – hydraulic profile – O & M aspects – case studies, residue management – up gradation of existing plants – recent advances.

TEXT BOOKS

- 1. Modi, P.N. "Water Supply Engineering", Vol. I Standard Book House, New Delhi, 2005.
- 2. Bhole A.G., Design of water treatment plants. Indian Water Works Association Publisher.

REFERENCES

- 1. David W. Hand, Kerry J. Howe, Water Treatment Principals and Design, John C.Crittenden, R.Rhodes Trussell, George Techobanoglous. Third Eddition.
- 2. Rangwala.S.C., Water supply and sanitary Engineering.
- 3. David.G. Stevensan., Water treatment UNIT Process.
- 4. Santhosh kumar Garg, Water supply Engineering.

COURSE OUTCOMES

At the end of this course the student will be able to

- Have the necessary understanding on the various physical treatment methods.
- Gain adequate familiarity on the concepts of chemical treatment principles.
- Acquire knowledge on design, operation and maintenance of treatment plants.
- Get knowledge on the principles of advanced treatment methods.
- Understand the concept of operation, process and design of conventional treatment plants

]	Марр	ing o	f COs	with F	POs		Mapping of COs with POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3												
CO1	2					1																					
CO2	2					1																					
CO3	1	1	3			1																					
CO4	1	1				2	2		2																		
CO5		2	3			2	2		2																		

CEHESCN	WATERSHED MANAGEMENT	L	T	P	C
CEHESCN	WATERSHED MANAGEMENT	3	0	0	3

COURSE OBJECTIVES

- To understand different watershed behavior.
- To be able to interpret runoff data and quantify erosion by using various modelling methods
- To emphasize the need for water conservation.

Unit-I

Watershed – Concept – Classification – Characteristics – Watershed Programmes – Need for Watershed Management – Factors affecting watershed management Planning of Watershed Works – Watershed Management Practices

Unit-II

Erosion – History and Types – Erosion Problems in India – Soil Erosion – Types of Soil Erosion – Controlling Soil Erosion – Soil Erosion by Wind and Water – Soil Conservation Practices – Structural and Non – Structural Measures – Soil loss estimation models

Unit-III

Need for Water Conservation – Water Conservation Measures – Water Harvesting – Principles and Techniques – Flood Water Harvesting

Unit-IV

Joint forest Management – Grassland Farming and Management – Range and Pastures – Grazing Practices – Waste Land Development – Drought Management – Integrated Watershed Management

Unit-V

Watershed Modelling – Standard Modelling Approaches and Classification, System Concept for Watershed Modelling, Rainfall – Runoff modeling – Applications of Remote Sensing and Geographical Information System

TEXT BOOKS

- 1. Suresh, R., Soil and Water Conservation Engineering, Standard Publishers & Distributors, New Delhi, 2000.
- 2. Ghanshyam Das, Hydrology and Soil conservation Engineering, Prentice Hall India, New Delhi, 2000.

REFERENCES

- 1. Tideman, E.M., Watershed Management Guidelines for Indian Conditions, Omega Scientific Publishers, New Delhi, 1996.
- 2. Murty, J.V.S., Watershed Management | New Age International, 1998.
- 3. Madan Mohan Das and Mimi Das Saikia, Watershed Management | PHI Learning Pvt. Ltd.
- 4. Ranga Reddy A., Watershed Management for Sustainable Development Published by Mittal, New Delhi, 2005.

COURSE OUTCOMES

At the end of this course the student will be able to

- Develop adequate knowledge on various watershed management practices.
- Understand the basics of erosion, its control and conservation practice.
- Gain acquaintance on the perception of water conservation and harvesting methods.
- Have the essential understanding on integrated water shed management.
- Get knowledge on the concept of watershed modelling and the application of RS and GIS.

		Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1						2					1	1	2	2	2	
CO2					1		2					2	2	1	1	
CO3					1							1	1	1	2	
CO4					1	1	1				1	1	1	1	2	
CO5					1		1			1		2	2	1	3	

Ī	CEHESCN	GEO ENVIRONMENTAL ENGINEERING	L	T	P	C
	CEHESCN	GEO ENVIRONMENTAL ENGINEERING	3	0	0	3

- The student acquires the knowledge on the Geotechnical engineering problems.
- To acquire knowledge on soil contamination and safe disposal of waste.
- Student to give remediation for the contaminated soils by different techniques.

Unit-I

Introduction to Geo environmental engineering – Environmental cycle – Sources, production and classification of waste – Causes of soil pollution – Factors governing soil pollution interaction clay minerals – Failures of foundation due to waste movement.

Unit-II

Safe disposal of waste – Site selection for landfills – Characterization of land fill sites and waste – Risk assessment – Stability of landfills – Current practice of waste disposal – Monitoring facilities – Passive containment system – Application of geosynthetics in solid waste management – Rigid or flexible liners.

Unit-III

Contaminant transport in sub surface – Advection, Diffusion, Dispersion – Governing equations – Contaminant transformation – Sorption – Biodegradation – Ion exchange – Precipitation – Hydrological consideration in land fill design – Ground water pollution.

Unit-IV

Stabilization – Solidification of wastes – Micro and macro encapsulation – Absorption, Adsorption, Precipitation – Detoxification – Mechanism of stabilization – Organic and inorganic stabilization – Utilization of solid waste for soil improvement – case studies.

Unit-V

Exsitu and Insitu remediation – Solidification, bio – remediation, incineration, soil washing, phyto remediation, soil heating, vetrification, bio – venting.

TEXT BOOKS

- 1. Hari D. Sharma and Krishna R. Reddy, Geo-Environmental Engineering John Wiley and Sons, INC, USA, 2004.
- 2. Daniel B.E., Geotechnical Practice for waste disposal, Chapman & Hall, London, 1993.

REFERENCES

- 1. Westlake, K., Landfill Waste pollution and Control, Albion Publishing Ltd., England, 1995.
- 2. Wentz, C.A., Hazardous Waste Management, McGraw Hill, Singapore, 1989.
- 3. Manoj Datta, Waste Disposal in Engineered landfills, Narosa Publishing House, 1997.
- 4. Manoj Datta, B.P. Parida, B.K. Guha, Industrial Solid Waste Management and Landfilling Practice, Narosa Publishing House, 1999.

COURSE OUTCOMES

At the end of this course the student will be able to

- Gain perception on the basics of Geo-Environmental Engineering, causes and failures due to soil pollution.
- Develop knowledge on characterization, risk assessment and stability of landfills.
- Get facts about contaminant transportation, dispersion and diffusion of waste in soil.
- Understand the concept of stabilization, solidification and utilization of solid waste for soil improvement.
- Have the thorough knowledge on the concept of remediation of soil.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2				3							1	2	3
CO2		1	2			3							2	3	1
CO3			1	2		3							3	1	2
CO4			1	2		3							2	1	3
CO5					1	2	3						2	3	1

CEHESCN	INTELLECTUAL PROPERTY RIGHTS	L T P C 3 0 0 3			
CEHESCN	INTELLECTUAL FROFERTT RIGHTS	3	0	0	3

COURSE OBJECTIVES

- To give an idea about IPR, registration and its enforcement.
- To understand the basic concepts and need for Intellectual Property.
- To understand IP Laws, Enforcement Measures and Emerging issues.

Unit-I

Introduction to IPRs, Basic concepts and need for Intellectual Property – Patents, Copyrights, Geographical Indications, IPR in India and Abroad – Genesis and Development – the way from WTO to WIPO – TRIPS, Nature of Intellectual Property, Industrial Property, technological Research, Inventions and Innovations – Important examples of IPR.

Unit-II

Meaning and practical aspects of registration of Copy Rights, Trademarks, Patents, Geographical Indications, Trade Secrets and Industrial Design registration in India and Abroad.

Unit-III

International Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agreement, Patent Act of India, Patent Amendment Act, Design Act, Trademark Act, Geographical Indication Act.

Unit-IV

Digital Innovations and Developments as Knowledge Assets – IP Laws, Cyber Law and Digital Content Protection – Unfair Competition – Meaning and Relationship between Unfair Competition and IP Laws – Case Studies.

Unit-V

Infringement of IPRs, Enforcement Measures, Emerging issues - Case Studies.

TEXT BOOKS

- 1. V. Scople Vinod, Managing Intellectual Property, Prentice Hall of India pvt Ltd, 2012.
- 2. S.V. Satakar, Intellectual Property Rights and Copy Rights, Ess Ess Publications, New Delhi, 2002

REFERENCES

- 1. Deborah E. Bouchoux, Intellectual Property: The Law of Trademarks, Copyrights, Patents and Trade Secrets, Cengage Learning, Third Edition, 2012.
- 2. Prabuddha Ganguli, Intellectual Property Rights: Unleashing the Knowledge Economy, McGraw Hill Education, 2011.
- 3. Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar Publishing Ltd., 2013.
- 4. Ahuja V.K., Law Relating to Intellectual Property Rights.

COURSE OUTCOMES

At the end of this course the student will be able to

- Understand the fundamentals and standards of IPR
- Develop knowledge on the methods of copy rightand patents
- Familiarize with various agreements, treaties and act regarding IPR.
- Get perception on digital innovations and IP laws.
- Have adequate understanding on the concept of enforcement measures and emerging issues.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1						2		1					1	2	3
CO2		3				2		1					2	3	1
CO3						3		2			1		3	2	1
CO4			1			2			3				2	1	3
CO5				3		3							1	3	2

CEHESCN	SUSTAINABLE ENGINEERING AND	L	T	P	С
CERESCN	TECHNOLOGY	3	0	0	3

- To have an increased awareness among students on issues in areas of sustainability
- To know the methods, tools, and incentives for sustainable product service system development
- To establish a clear understanding of the role and impact of various aspects of engineering and engineering decisions on environmental, societal, and economic problems.

Unit-I

Sustainability – Introduction, Need and concept of sustainability, Social environmental and economic sustainability concepts. Sustainable development, Nexus between Technology and Sustainable development, Challenges for Sustainable Development. Multilateral environmental agreements and Protocols – Clean Development Mechanism (CDM), Environmental legislations in India – Water Act, Air Ac

Unit-II

Air Pollution, Effects of Air Pollution; Water pollution – sources, Sustainable wastewater treatment, Solid waste – sources, impacts of solid waste, Zero waste concept, 3 R concept. Global environmental issues – Resource degradation, Climate change, Global warming, Ozone layer depletion, Regional and Local Environmental Issues. Carbon credits and carbon trading, carbon foot print.

Unit-III

Environmental management standards, ISO 14000 series, Life Cycle Analysis (LCA) – Scope and Goal, Bio – mimicking, Environment Impact Assessment (EIA) – Procedures of EIA in India

Unit-IV

Basic concepts of sustainable habitat, Green buildings, green materials for building construction, material selection for sustainable design, green building certification, Methods for increasing energy efficiency of buildings. Sustainable cities, Sustainable transport.

Unit-V

Energy sources: Basic concepts – Conventional and non – conventional, solar energy, Fuel cells, Wind energy, Small hydro plants, bio – fuels, Energy derived from oceans, Geothermal energy Green Engineering, Sustainable Urbanisation, industrialisation and poverty reduction; Social and technological change, Industrial Processes: Material selection, Pollution Prevention, Industrial Ecology, Industrial symbiosis.

TEXT BOOKS

- 1. Purohit, S.S., Green Technology An approach for sustainable environment, Agrobios publication.
- 2. Peter P. Rogers, Kazi F. Jalal, John A. Boyd, An Introduction To Sustainable.
- 3. Development, Glen Educational Foundation, 2008.

REFERENCES

- 1. Allen, D.T. and Shonnard, D.R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- 2. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.
- 3. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
- 4. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.
- 5. ECBC Code 2007, Bureau of Energy Efficiency, New Delhi Bureau of Energy Efficiency Publications Rating System, TERI Publications GRIHA Rating System.
- 6. Ni bin Chang, Systems Analysis for Sustainable Engineering: Theory and Applications, McGraw Hill Professional.
- 7. Twidell, J.W. and Weir, A.D., Renewable Energy Resources, English Language Book Society (ELBS).

COURSE OUTCOMES

At the end of this course the student will be able to

- Develop knowledge on the fundamentals of sustainable development.
- Get perception about pollution, global environmental issues and carbon footprint.
- Understand the concept of environmental management and EIA.
- Develop familiarity on sustainable habitat and green buildings.
- Attain adequate knowledge about the various energy sources

•

]	Марр	ing o	f COs	with F	POs				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1					1	2	2	1	1	1			2	3	3
CO2			1		1	1				1	1		2	3	3
CO3			2			1	1	1					2	3	3
CO4						2	3	1				2	2	3	3
CO5						2	1	2				1	2	3	3

MINOR ENGINEERING ELECTIVES

CEMESCN	ADVANCED WATER TREATMENT	L	T	P	С	
CEMESCH	ADVANCED WATER TREATMENT	4	0	0	4	1

COURSE OBJECTIVES

- To realize the principle and concept of physico-chemical treatment.
- To understand the concept of conventional water treatment system.
- To design the advanced water treatment system.

Unit-I: Physical Treatment Principles

Principles of screening – mixing, equalizations – sedimentation – filtration – modeling – backwashing – evaporation – incineration – gas transfer – mass transfer coefficients. Adsorption – isotherms – principles, equilibrates and kinetics, reactors, regeneration, membrane separation, reverse osmosis, nano filtration ultra filtration and hyper filtration – electro dialysis, distillation – stripping and crystallization – recent advances.

Unit-II: Chemical Treatment Principles

Principles of chemical treatment – coagulation flocculation – precipitation – floatation, solidification and stabilization – disinfection .ion exchange, electrolytic methods – Solvent extraction – advanced oxidation / reduction – recent advances.

Unit-III: Water Treatment

UNIT operations and processes – Principles, functions design and drawing of Chemical feeding, Flash mixers, flocculators, sedimentation tanks and sand filters – Disinfection – Residue Management – Construction and Operation & Maintenance aspects of Water Treatment Plants.

Unit-IV: Advanced Water Treatment

Principles and functions of Aeration – Iron and manganese removal, Defluoridation and demineralization – Water softening – Desalination – Membrane Systems – Recent advances.

Unit-V: Design of Conventional Treatment Plants

Selection of UNIT operation and processes – design of conventional water treatment plant UNITs – aerators – chemical feeding – flocculation – clarifier – filters – rapid sand filter, slow sand filter, pressure filter – chlorinators. Displacement and gaseous types and layouts – flowcharts – hydraulic profile – O & M aspects – case studies, residue management – up gradation of existing plants – recent advances.

TEXT BOOKS

- 1. Modi, P.N. "Water Supply Engineering", Vol. I Standard Book House, New Delhi, 2005.
- 2. Bhole A.G., Design of water treatment plants. Indian Water Works Association Publisher.

REFERENCES

- 1. John C. Crittenden, R.Rhodes Trussell, David W. Hand, Kerry J. Howe, George Techobanoglous, Water treatment Principals and Design, Third Eddition.
- 2. Rangwala S.C., Water supply and sanitary Engineering.
- 3. David G. Stevensan, Water treatment UNIT Process.
- 4. Santhosh kumar Garg. Water supply Engineering I.

COURSE OUTCOMES

At the end of this course the student will be able to

- Have the necessary understanding on the various physical treatment methods.
- Gain adequate familiarity on the concepts of chemical treatment principles.
- Acquire knowledge on design, operation and maintenance of treatment plants.
- Get knowledge on the principles of advanced treatment methods.
- Understand the concept of operation, process and design of conventional treatment plants

]	Марр	ing o	f COs	with I	POs				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2					1							2	2	3
CO2	2					1							3	2	3
CO3	1	1	3			1							3	3	3
CO4	1	1				2	2		2				3	3	3
CO5		2	3			2	2		2				3	3	3

CEMES	זאי	CLIMATE CHANGE ADAPTATION &	L	Т	P	С
CEMES	>1 A	MITIGATION	3	0	0	3

- To understand the earth's climate change and its system classification.
- To introduce the observed changes in the climate and concept of modeling and
- Institutional arrangements existing for monitoring this phenomenon.
- To understand Climate Change Adaptation and Mitigation Measures.

Unit-I: Earth's Climate System

Introduction – Climate in the spotlight – The Earth's Climate Machine – Climate Classification – Global wind systems – Trade Wind Systems – Trade Winds and the Hadley Cell – The Weser lies – Cloud formation and Monsoon Rains – Storms and Hurricanes – The Hydrological Cycle – Global Ocean Circulation – El Nino and its Effect – Solar Radiation – The Earth's Natural Green House Effect – Green House Gases and Global Warming – Carbon Cycle.

Unit-II: Observed Changes and its Causes

Observation of Climate Change – Changes in pattern of temperature, precipitation and sea level rise – Observed effects of Climate Changes – Patterns of Large Scale Variability – Drivers of Climate Change – Climate Sensitivity and Feedbacks – The Montreal Protocol – UNFCCC – IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India – Climate Change modeling.

Unit-III: Impacts of Climate Change

Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water resources – Human Health – Industry, Settlement and Society – Methods and Scenarios – Projected Impacts for different regions – Uncertainties in the Projected Impacts of Climate Change – Risk of irreversible changes.

Unit-IV: Climate Change Adaptation and Mitigation Measures

Adaptation Strategy/options in various sectors – Water – Agriculture – Infrastructure and Settlement including coastal zones. Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and practices – Energy supply – Transport – Buildings – Industry – Agriculture – Forestry – Carbon sequestration – Carbon Capture and Storage (CCS) – Waste (MSW & Biowaste, Biomedical, Industrial waste – International and Regional Co-operation.

Unit-V: Clean Technology and Energy

Clean Development Mechanism – Carbon Trading – Examples of future Clean Technology – Biodiesel – Natural Compost – ECo-friendly Plastic – Alternate Energy – Hydrogen – Bio – fuels – Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding.

TEXT BOOKS

- 1. Mridula Ramesh, The climate solution|, Hachette India Publisher.
- 2. Alka Sen, Global Warming and Climate Changel Academic Publication.

REFERENCES

- 1. Al core <u>Inconvenient Truth</u> video form.
- 2. Dash Sushil Kumar, Climate Change An Indian Perspective^{||}, Cambridge University Press India Pvt. Ltd, 2007.

- 3. IPCC Fifth Assessment Report www.ipcc.ch.
- 4. Jan C. Van Dam, Impacts of Climate Change and Climate Variability on Hydrological Regimes, Cambridge University Press, 2003.

COURSE OUTCOMES

At the end of the course students will be able to

- Understand the earth's climate change and its system classification.
- Introduce the observed changes in the climate and concept of modeling and Institutional arrangements existing for monitoring the phenomenon.
- Show the impact of climate change on various sectors and its irreversibility.
- Prepare the adaptation and mitigation measures of climate change on various sectors.
- Choose the clean Technology for the Fuel and energy through natural and eco friendly techniques.

										with I					
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	3										1	2	3
CO2		1	2	3									1	2	3
CO3			2	3									1	2	3
CO4				1	2	3							1	2	3
CO5					1	2	3						1	2	3

CEMESCN	ENVIRONMENTAL IMPACT ASSESSMENT	L	T	P	C	1
CEMESCN	ENVIRONMENTAL IMPACT ASSESSMENT	3	0	0	3	1

COURSE OBJECTIVES

- To understand the evolution, role, application and the general procedure for EIA
- To impart the concept of Environmental Management Systems (EMS).
- To impart/inculcate the knowledge of Environmental Auditing, Life cycle Assessment (LCA).
- To introduce the concept and role of Cleaner Production, Sustainable Development and ISO 14000 series.
- To understand the rules and regulations governing EIA and EIA case studies.

Unit-I

Evolution of EIA - Concepts - Methodologies - Screening - Scoping - Base line Studies - mitigation - Matrices - Checklist.

Unit-II

Rapid EIA – Comprehensive EIA – Legislative and Environmental Clearance procedure in India – prediction tools for EIA.

Unit-III

Assessment of Impact on Air – Soil – Water – Noise – Biological – Socio – Cultural Environment. Public participation – Resettlement and Rehabilitation procedures – Sustainable Development.

Unit-IV

Documentation of EIA – EMP – Post project Monitoring – EIA case studies. Environmental Auditing – Various types of Audit – Philosophy – concepts – rules and relevant methodologies.

Unit-V

Concept of Cleaner production – Role of ISO and ISO 14000 in Environmental Management.

TEXT BOOKS

- 1. Canter R.L., Environmental Impact Assessment^{||}, McGraw Hill Inc., New Delhi, 1997
- 2. Anjaneyalu Y., Environmental Impact Assessment Methodologies , B.S. Publications, Hyderabad, 2002.

REFERENCES

- Lohani B., Evans J.W., Ludwig H., Everitt R.R., Richard A. Carpenter and Tu S.L.,
 — Environmental Impact Assessment for Developing countries in Asial, Volume 1 –
 Overview, Asian Development Bank, 1997.
- 2. Peter Morris and Riki Therivel, Methods of Environmental Impact Assessment , Routledge Publishers, 2009.
- 3. Barry Sadler and Mary McCabe, Environmental Impact Assessment Training Resource Manual, UNITed Nations Environment Programme, 2002.
- 4. Judith Petts, Handbook of Environmental Impact Assessment Volume I and III, Blackwell Science, New York, 1999.
- 5. Ministry of Environment and Forests, EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010.
- 6. The World Bank, Environmental Impact Assessment Source book, Volume I, II and IIII, Washington D.C., 2011.

COURSE OUTCOMES

At the end of the course students will be able to

- Apply the main procedures and methods which are adopted at different stages in EIA process.
- Develop on Environmental Management Systems.
- Explain different methodologies for Environmental Impact prediction and assessment.
- Evaluate EIA reports
- Examine the process by which legal systems are adopted and enforced.

]	Mapp	ing o	f COs	with F	POs				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2										2	2	3
CO2		3	2	3		3			2		3		2	2	3
CO3			3			2		2				3	3	2	3
CO4					2	3	2	1		1			3	2	3
CO5	2									2	3		3	2	3

CEMESCN	TOTAL QUALITY MANAGEMENT	L	T	P	С
CEMESCN	TOTAL QUALITY MANAGEMENT	3	0	0	3

- To evaluate the principles of quality management and to explain how these principles can be applied within quality management systems.
- To appraise the organisational, communication and teamwork requirements for effective quality management.
- Critically analyse the strategic issues in quality management, including current issues and developments and to devise and evaluate quality implementation plans.

Unit-I

Introduction – Need for quality – Evolution of quality – Definitions of quality – Dimensions of product and service quality – Basic concepts of TQM – TQM Framework – Contributions of Deming, Juran and Crosby – Barriers to TQM – Customer focus – Customer orientation, Customer satisfaction, Customer complaints, Customer retention.

Unit-II

Leadership – Quality Statements, Strategic quality planning, Quality Councils – Employee involvement – Motivation, Empowerment, Team and Teamwork, Recognition and Reward, Performance appraisal – Continuous process improvement – PDCA cycle, 5S, Kaizen – Supplier partnership – Partnering, Supplier selection, Supplier Rating.

Unit-III

The seven traditional tools of quality – New management tools – Six sigma: Concepts, Methodology, applications to manufacturing, service sector including IT – Bench marking – Reason to bench mark, Bench marking process – FMEA – Stages, Types.

Unit-IV

Quality Circles – Cost of Quality – Quality Function Deployment (QFD) – Taguchi quality loss function – TPM – Concepts, improvement needs – Performance measures.

Unit-V

Introduction—Benefits of ISO Registration—ISO 9000 Series of Standards—Sector – Specific Standards—AS 9100, TS16949 and TL 9000 – – ISO 9001 Requirements—

Implementation—Documentation—Internal Audits—Registration – environmental management System: Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001—Benefits of EMS.

TEXT BOOKS

- 1. Dale H. Besterfiled, Carol B.Michna, Glen H. Besterfield, Mary B.Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe, Total Quality Management, Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.
- 2. Janakiraman. B and Gopal R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.

REFERENCES

1. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.

- 2. Janakiraman. B and Gopal .R.K., "Total Quality Management Text and Cases", Prentice Hall (India) Pvt. Ltd., 2006.
- 3. Suganthi.L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.
- 4. ISO9001 2015 standards.

COURSE OUTCOMES

The student would be able to

- Apply the tools and techniques of quality management.
- Gather a leadership quality and strategic planning and management.
- Apply manufacturing and services processes in quality management.
- Understand the quality measuring techniques.
- know the ISO certification process and internal auditing system.

							Mapp	ing o	f COs	with I	POs				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1		2	2			3	2		2		1	3	1	2
CO2	1		1		3		1				2	3	3	2	2
CO3	3	3	2				3			3			3	1	2
CO4		2		1	2	3		1	1	1			3	2	2
CO5	2			2			1				2		3	2	2

CEMESCN	URBAN PLANNING & DEVELOPMENT	L	T	P	C	
CEMESCA	ORDAN FLANNING & DEVELOPMENT	3	0	0	3	

COURSE OBJECTIVES

- To enable students to develop knowledge on Urban and rural planning.
- To introduce the regulations and laws related to urban planning.
- To educate the importance of zoning in planning.
- To get to know the principles involved in planning public buildings.

Unit-I

Objects of town planning – Economic justification – Principles of Town Planning – Necessity of Town Planning – Growth of Towns – Natural and planned growth – stages in Town Development – Distribution of Landuse – Forms of planning – Development of Town Planning in Ancient India – Concepts of Modern Town Planning and its stages.

Unit-II

Types of surveys – Collection of Data – Importance of zoning – Classification of Zoning – Use of zoning – Height zoning – Density zoning – Housing – Planning of neighborhood UNITs – Types of Layouts – Classification of housing – Housing problems in India.

Unit-III

Parks and Playgrounds – Schools – Public buildings and Town Centres – Industries – Industrial Estates – Communication and Traffic system – Traffic surveys – Traffic congestions – Types of road junctions – Parking facilities – Street lighting.

Unit-IV

Urban Renewal – Replanning of the existing towns – Objects of replanning – Necessity of Replanning – Advantages of Master plan – Data and Maps – Features of Master plan – Implementation of Master Plan – Planning law and Legislation in India – Building Bye laws – Functions of Local authority – Development – Control Rules for Metropolitan and District Municipalities.

Unit-V

Concept of rural planning – Urban and Rural differences – Urbanization – Principles of Rural planning – Village redevelopment – Integral Rural development program – Rural housing – Principles – Design of Rural Housing – Rural Housing schemes – Group housing – Environmental Sanitation in Rural planning – Usage of low cost materials.

TEXT BOOKS

- 1. Rangwala. S.C., Town Planning, Charotar Publications House Pvt. Ltd., Gujarat, 26th Edition, 2013.
- 2. Thooyavan. K.R., Human Settlements A Planning Guide to Beginnersl, M.A. Publications, Chennai, 2005.

REFERENCES

- 1. Chennai Metropolitan Development Authority, Second Master Plan for Chennail, Government of Tamilnadu, Chennai, 2008.
- 2. Tamilnadu Town and Country Planning Act 1971, Government of Tamilnadu, Chennai, 1971.
- 3. Goel. S.L., Urban Development and Management , Deep and Deep Publications, New Delhi, 2002.
- 4. Wellmann and Marcus, Urban Infrastructure and Finance Management, Wiley Blackwell, UK 2012.

COURSE OUTCOMES

At the end of the course students will be able to

- Describe basic issues in urban planning.
- Formulate plans for Urban and rural development.
 - Plan and analyze socio economic aspects of Urban and rural planning.
- Understand functions of local authority with a clear idea of control rules.
- Understand the concept of rural planning and sanitation.

							Mapp	ing o	f COs	with F	POs				
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3					3					2	1	2
CO2		3	2	3									2	2	2
CO3		3	3			3							2	2	2
CO4		3	2							3			2	2	2
CO5	3					3	3						2	2	2

CEMESCN	SPECIAL CONCRETE STRUCTURES	L	T	P	C
CEMESCH	SPECIAL CONCRETE STRUCTURES	3	0	0	3

- To expose the students to the design practices of complicated RCC structures like Deep beams, R.C.poles, storage containers and elevated water tanks.
- To understand the significance of various code specifications in design of special concrete structures.
- To introduce the different types of philosophies related to design of special concrete structures.

Unit-I

Analysis and Design of Building frames – Analysis for vertical and horizontal loads – Method of substitute frames – Portal method – Cantilever method – Factor method. Design of portal frames with vertical loads – Design of gable frames with vertical loads – Design of deep beams using strut and tie concept – Design of Concrete Corbels for crane loads – Design of Grid floors – Detailing of reinforcement as per relevant standards.

Unit-II

Design of Concrete Poles as per IS 785: 1965 – Design of Concrete Hume Pipes as per IS 458:1971 – Design of R.C. Chimneys as per IS 4998 (Part I): 1992-Design of Portal frames as per SP 43: 1987 – Detailing of reinforcement as per relevant standards.

Unit-III

Design of Concrete Bunkers as per IS 4995 (Part I,II): 1974 – Design of Concrete Silos as per IS 5503 (Part I):1969 – Detailing of reinforcement as per relevant standards.

Unit-IV

Design of Elevated Concrete water tanks – Circular tanks – Rectangular tanks – Intze type tanks – Design of stagging – Design of Underground Rectangular and Circular Water tanks – Design of Domes – Detailing of reinforcement as per IS 11992: 1995, IS 3370 (Part IV): 1967 and IS 3370 (Part I): 2009.

Unit-V

Design of Bridge deck Slab – I.R.C. Loadings – Design of solid slab bridges – Pigeaud's curves – General design requirements as per IRC: 6 – 2014 and IRC 21: 2000.

TEXT BOOKS

- 1. Krishnaraju, N., Advanced R.C.Design, CBS Publishers & Distributors Pvt. Ltd., 2012.
- 2. Punmia, B.C., Ashok Kumar Jain and Arun Kumar Jain, R.C.Structures Vol. I & III, Laxmi Publications (P) Ltd., 1992.

REFERENCES

- 1. Mallick, S.K. & Gupta, A.P., Reinforced Concretel, Oxford I B H, 1987.
- 2. Park and Paulay, T., R.C.Structures, Tata McGraw Hill Publications, 1975.
- 3. Ramamrutham, S. and Narayan, R., —Design of R.C. Structuresl, Dhanpat Rai and Sons, 1992.
- 4. Dayaratnam, P., Design of RC Structures, Oxford & IBH Publishing Co., 2000.
- 5. Punmia, B. C., R.C. Structures Vol. III, Standard Publishers, 1991.

STANDARDS

1. IS 456: 2000, Code of Practice for Plain and Reinforced Concrete, Bureau of Indian Standards, New Delhi.

- 2. IS 13920: 1993, Ductile Detailing of Reinforced Concrete structures subjected to Seismic Forces Code of Practice.
- 3. SP 34: 1987, Handbook on Concrete Reinforcement and Detailing.
- 4. IRC: 6 2014, Standard Specifications and Code of Practice for Road Bridges Section: II (Loads And Stresses).
- 5. IRC 21: 2000, Standard Specifications and Code of Practice for Road Bridges Section: III [Cement Concrete (Plain And Reinforced)].
- 6. IS 1343:1980, Code of Practice for Pre stressed Concrete, Bureau of Indian Standards, New Delhi, 2012.
- 7. IS 2974 (Part I):1982, Code of Practice for Design and Construction of Machine Foundations (Foundation for Reciprocating Type Machines).
- 8. IS 2974 (Part II):1980, Code of Practice for Design and Construction of Machine Foundations [Foundations for Impact Type Machines (Hammer Foundations)].
- 9. IS 2974 (Part III): 1992, Design and Construction of Machine Foundations Code of Practice [Foundations for Rotary Type Machines (Medium and High Frequency)].
- 10. IS 2974 (Part IV):1979, Code of Practice for Design and Construction of Machine Foundations (Foundations for Rotary Type Machines of Low Frequency).
- 11. IS 4995 (Part I): 1974, Criteria for Design of Reinforced Concrete Bins for the Storage of Granular and Powdery Materials (General Requirements and Assessment of Bin Loads).
- 12. IS 4995 (Part II):1974, Criteria for Design of Reinforced Concrete Bins for Storage of Granular and Powdery Materials (Design Criteria).
- 13. IS 9178 (Part II):1979, Criteria for Design of Steel Bins for Storage of Bulk Materials (Design Criteria).
- 14. IS 5503 (Part I): 1969, General Requirements for Silos for grain storage (Construction requirements).
- 15. IS 4998 (Part I): 1992, Criteria for Design of Reinforced (Assessment of Loads).
- 16. IS 3370 (Part IV): 1967, Code Of Practice for Concrete Structures for the Storage of Liquids.
- 17. IS 11992: 1995, Criteria for Design Of RCC Staging For Overhead Water Tanks.
- 18. IS 3370 (Part I): 2009, Concrete Structures for Storage of Liquids Code of Practice.
- 19. IRC: 6 2014, Standard Specifications and Code of Practice for Road Bridges Section: II (Loads And Stresses).
- 20. IRC 21: 2000, Standard Specifications and Code of Practice for Road Bridges Section III [Cement Concrete (Plain And Reinforced)].

COURSE OUTCOMES

At the end of this course the student will be able to

- Develop basic knowledge about various complicated structural elements.
- Get knowledge on the concepts of R C pipes and chimneys.
- Gain adequate familiarity in the design of Bunkers and silos.
- Understand the design of tanks with relevant to standard specifications.
- Analyze with standard specification the concepts of bridge slabs.

	Mapping of COs with POs														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1										2		
CO2	3	1	1										2		
CO3	2	1	3										2		
CO4	2	2	3										2		
CO5	2	1	2			1				1			2		

B.E. CIVIL ENGINEERING

ANNAMALAI UNIVERSITY PRESS: 2021

III Civil Hall No.HL1

Day/Time	08.30-09.15	9.15-10.00	10.00-10.45		10.55-11.40	11.40-12.30		01.30-02.15	02.15-03.00	03.00-03.45	03.45-04.30
Monday		ETES303	CEPC305	В	ETBS301	CZPC306			CESP 307		
Tuesday		CEES304	ETES302	R E A	CEPC305	CZPC306	L U N	ETBS301	CESP 307 IT-Computer Lab Dr.S.S & Mr.K.S.A		
Wednesday		ETES303	ETES302	K	CEPC305	CEES304	C H	ETBS301	CECP 308		
Thursday	ETES302	CEES304	ETES303		ETBS301	CZPC306				CZCP 309	
Friday	ETES303	CEES304	ETES302		CEPC305	CZPC306			Placement Dr.P.S	Internship Mr.K.S.A	Library Mr.K.S.A

A	ETBS301	Engineering Mathematics-III	Dr.K.Elangovan (Incharge) & Dr.P.Valsamy
В	ETES302	Environmental Studies	Dr.R.Sheela
C	ETES303	Engineering Mechanics	Dr.T.Velayutham
D	CEES304	Construction Engineering	Dr.S.Sivaprakasam
E	CEPC305	Introduction to Fluid Mechanics	Dr.N.Manikumari
F	CZPC 306	Concrete Technology	Mr.M.Anand
G1	CESP 307	Computer practical – Building Drawing (Hall No. 3301)	Dr.K.Karthikeyan & Dr.S.Sivaprakasam
G2	CECP 308	Fluid Mechanics Lab	Dr.P.Sivarajan&Dr.R.Sheela
G3	CZCP 309	Construction Materials Lab	Dr.R.Murugan & Dr.J.Saravanan
	IT-I	Internship Inter/ Intra Institutional Activities	
	Wednesday	Mentor Mentee Meeting	
	04.30 to 05.30) Without Michiel Miching	

V Civil Hall No.HL2

Day/Time	08.30-09.15	9.15- 10.00	10.00-10.45		10.55-11.40	11.40-12.30		01.30-02.15	02.15-03.00	03.00-03.45	03.45-04.30
Monday		CEPC501	CEPC504	В	CEPC503	CEPC502				CECP507	
Tuesday	CEPC502	CEPC504	CEPE506	R E A	CEPC503	CEPE505	L U N		Intern Dr.M.R&	-	
Wednesday	CEPE506	CEPC504	CEPE505	K	CEPC501	CEPC502	C H	Library Mr.K.S.A		CECP509	
Thursday	CEPC504	CEPE505	CEPC501		CEPE506	CEPC503				CECP508	
Friday	CEPC503	CEPC501	CEPC502		CEPE506	CEPE505			Placement Dr.T.V		

A	CEPC501	Water & Wastewater Engineering	Dr.C.Jothi
В	CEPC502	Advanced Surveying-II	Dr. B. Kumaravel
\mathbf{C}	CEPC503	Structural Analysis (C&S)	Dr. R. Sivagamasundari
D	CEPC504	Structural Concrete Design (C&S)	Dr.R. Murugan
\mathbf{E}	CEPE505	Professional Elective – I (Transportation Engineering)	Capt.Dr.P.Ravichandran
\mathbf{F}	CEPE506	Professional Elective – II (Irrigation Engineering)	Dr.K.Ezhisaivallabi
G1	CECP507	Environmental Engineering Lab	Dr.G.Senthilkumer&Dr.N.Ashok Kumar
G2	CECP508	Surveying Laboratory-II	Dr.B.Kumaravel & Dr.T.Velayutham
G3	CECP509	Structural Design & Detailing (C&S) Laboratory-I (IT Lab)	Dr.P.Palson & Dr.D.Gopinath
	ETIT510	Industrial Training / Rural Internship/Innovation/ Entrepreneurship	Dr.T.Velayutham & Dr.V.Damodharan
	Wednesday 04.30 to 05.30	Mentor Mentee Meeting	

VII Civil

Hall No. 2210

Day/Time	08.30-09.15	9.15-10.00	10.00-10.45		10.55-11.40	11.40-12.30		01.30-02.15	02.15-03.00	03.00-03.45	03.45-04.30	
Monday		СЕРЕ703	CEPE704	В	CEPC702	ETHS701	т			Project Dr.T.R ;Dr.B.K		
Tuesday	CZOE705	CEPE704	CEPC702	R E	ETHS701	CEPE703	U			rnship R&Dr.B.K		
Wednesday		CZOE705	ETHS701	A	CEPE704	CEPC702	N C		CECP706			
Thursday		CEPE703	CZOE705	K	CEPE704	CEPC702	Н		Seminar Mr.K.S.A			
Friday		CZOE705	ETHS701		СЕРЕ703				Library Mr.K.S.A	Placement Dr.B.K		

A	ETHS701	Professional Practices, Law & Ethics	Dr.S.Palanivelraja
В	CEPC702	Planning & Cost Evaluation	Dr.T.Ramesh
\mathbf{C}	CEPE703	PE-VI (Construction Planning & Management)	Mr.R.Rajarathinam
D	CEPE704	PE – VII (Railways, Airports and Harbour Engineering)	Dr.K.Karthikeyan
\mathbf{E}	CZOE705	OE –II (inter department- Allied branch) (C&S)(Earthquake Engg.)	Dr. D. Gopinath
\mathbf{F}	CECP706	Planning & Cost Evaluation Laboratory	Dr.T.Ramesh&Dr.S.Sivaprakasam
	ETIT707	Industrial Training / Rural Internship/Innovation / Entrepreneurship	Dr.S.Palanivelraja&Dr.B.Kumaravel
	Wednesday 04.30 to 05.30		

II ME Environmental Engineering

Hall No: HL 4

Day/Time	08.30-09.15	09.15-10.00	10.00-10.45	10.55- 11.40	11.40-12.25	01.30- 02.15	02.15-03.00	03.00-03.45	03.45-04.30
Monday		CEEEPC22	CEEEPE24	CEEEPE23	CEEEPC21				
Tuesday		CEEEOE25	CEEEPC21	CEEEPE23	CEEEAC28		CEEI	ETS27	
Wednesday	CEEEPE24	CEEEPC22	CEEEOE25	CEEEPE23	CEEEPC21		CEEECP26		
Thursday	CEEEPE24	CEEEPC22	CEEEPE23	CEEEOE25	CEEEAC28				
Friday		CEEEPC22	CEEEPC21	CEEEPE24	CEEEOE25			Library	

CEEEPC21 Biological Treatment Systems for Water & Wastewater

CEEEPC22 Solid Waste Management

CEEEPE23 PE-III Remote Sensing and GIS

CEEEPE24 PE-IV Air Pollution Meteorology and Modelling

CEEEOE25 OE-I (Inter Faculty) Waste to Energy (Electrical)

CEEECP26 Laboratory III (Core Lab)

CEEETS27 Industrial Training and Seminar/ Mini Project

CEEEAC28 Audit Course-II (English for Research paper writing – English

4 Dr. V. Nehru Kumar

4 Dr. V. Arutchelvan

4 Dr.S.Poongothai

4 Dr.M.Rajendran

4 Dr.R.Ashok Kumar (9942174305)

4 Dr.C.Jothi and Dr.P.Ravichandran

3 Dr.B.Asha & Dr.V.Damodharan

2 Dr.K.Muthuraman, Faculty of Arts

Annamalainagar,08.06.2022